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BIOSYNTHESIS OF BISINDOLE ALKALOIDS

The medicinal plant Catharanthus roseus (L.) G. Don is of  
enormous pharmaceutical interest because it contains about 130 
terpenoid indole alkaloids (TIAs), some of  which exhibit strong 
pharmacological activities.[1] Jamalicine is an antihypertensive 
alkaloid. Vinblastine and vincristine, which are bisindole 
alkaloids derived from coupling vindoline and catharanthine, 
were the first natural drugs used in cancer therapy and are 
still among the most valuable agents used in the treatment of  
cancer, to date.[2] All TIAs in C. roseus are derived from the 
central precursor strictosidine, which is a fusion product of  
the shikimate pathway–derived tryptamine moiety and the 
plastidic nonmevalonate pathway–derived secologanin moiety.[3] 
The anticancer agents vinblastine and vincristine are produced 
exclusively by C. roseus.[4] More importantly, the TIA biosynthetic 
pathway is under strict developmental and environmental 
control.[3]

The biosynthetic pathway of  C. roseus TIA has been investigated 
for many years, but the whole process is not completely 
understood. Overall, three stages could be recognized in the 
biosynthesis of  bisindole alkaloids:[3,5,6] (1) Formation of  
tryptamine and secologanin: Tryptamine is biosynthesized from 
the shikimate pathway and secologanin from the terpenoid 
pathway; (2) Formation of  monomeric alkaloids: Tryptamine 
and secologanin are combined to form strictosidine, which is 
further converted to monomeric alkaloids like vindoline and 
catharanthine; (3) Formation of  bisindole alkaloids: Vinblastine 
and vincristine synthesize from the coupling of  catharanthine 
and vindoline [Figure 1].

FORMATION OF STRICTOSIDINE

Strictosidine, the central intermediate in the TIA biosynthesis of  
C. roseus, is formed by the coupling of  iridoid glycoside secologanin 
and tryptamine under the catalysis of  strictosidine synthase (STR).[7,8]

FORMATON OF VINDOLINE

Strictosidine‑β‑D‑glucosidase (SGD) may be the enzyme 
playing an important role in steering the monoterpenoid indole 
alkaloid biosynthesis in a specific direction.[5] The removal of  
the glucose moiety of  strictosidine by SGD leads to an unstable, 
highly reactive aglucon, which is thought to be converted to 
4,21‑dehydrogeissoschizine.[9] The latter is believed to be converted 
by cathenamine synthase to cathenamine.[5,10] Subsequently, 
the cathenamine is converted into tabersonine through several 
steps, which are not clearly understood. Finally, tabersonine is 
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Figure 1: Biosynthesis of Catharanthus TIAs. Solid arrows indicate confirmed enzymatic conversions, whereas, the broken arrows indicate 
unknown enzymatic conversions. G10H: geraniol 10-hydroxylase; TDC: Tryptophan decarboxylase; STR: strictosidine synthase; SGD: Strictosidine 
β-D-glucosidase; T16H: 16-hydroxylase; OMT: O-methyltransferase; NMT: N-methyltransferase; D4H: Desacetoxyvindoline 4-hydroxylase; 
DAT: Deacetylvindoline-4-O-acetyltransferase; AVLBS: Anhydrovinblastine synthase

transformed into vindoline by a sequence of  six steps.[4,5] The 
steps include: Aromatic hydroxylation, O‑methylation, hydration 
of  the 2,3‑double bond, N(1)‑methylation, hydroxylation 
at position 4, and 4‑O‑acetylation. The intermediates 
involved are 16‑hydroxytabersonine, 16‑methoxytabersonine, 
1 6 ‑ m e t h ox y ‑ 2 , 3 ‑ d i hyd r o ‑ 3 ‑ hyd r ox y ‑ t a b e r s o n i n e , 
desacetoxyvindoline, and deacetylvindoline. Most enzymes in 
the biosynthetic pathway from tabersonine to vindoline have 
been identified. They are tabersonine 16‑hydroxylase (T16H), 
O‑methyltransferase (OMT), N‑methyltransferase (NMT), 
d e s a c e t o x y v i n d o l i n e ‑ 4 ‑ h y d r o x y l a s e ( D 4 H ) , a n d 

deacetylvindoline‑4‑O‑acetyltransferase (DAT). However, the 
enzyme that catalyzes the conversion of  16‑methoxytabersonine to 
16‑methoxy‑2,3‑dihydro‑3‑hydroxy‑ tabersonine is still unknown.[4]

FORMATION OF CATHARANTHINE

The information on catharanthine biosynthesis is very limited. 
It may be derived from strictosidine through the intermediate 
of  geissoschizine and stemmadenine. However, the enzymes 
involved are not isolated and the genes are not cloned.[5]
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FORMATION OF BISINDOLE ALKALOIDS

The bisindole alkaloids vinblastine and vincristine are of  great 
interest. They are synthesized from the coupling of  the monomeric 
alkaloids catharanthine and vindoline. The product resulting from 
the coupling is α‑3′,4′‑anhydrovinblastine, which is converted 
into vinblastine and then further converted into vincristine. The 
coupling process is catalyzed by the enzyme anhydrovinblastine 
synthase (AVLBS).[11] However, the enzyme catalysis the 
formation of  vinblastine from α‑3′,4′‑anhydrovinblastine is still 
unknown. Moreover, the enzyme that catalyzes the conversion 
of  vinblastine to vincristine is also not isolated.

REGULATION FACTORS OF DIMERIC INDOLE 
ALKALOIDS DIAS AND THEIR PRECURSOR 
BIOSYNTHESIS

Light
Light is thought to have an effect on enzyme induction and 
activation. It has been shown that light significantly influences 
the biosynthesis of  vindoline and other alkaloids, as well as acidic 
and basic peroxidase activities. Light promotes vindoline and 
serpentine biosynthesis, and stimulates plastid development and 
peroxidase activity.[12] After it is light‑treated, the concentration 
of  vindoline increases significantly in cultures of  C. roseus, 
including in cultured cells, leaves, seedlings, and plants. The 
results of  gene expression investigation have demonstrated 
that upregulation of  tryptophan decarboxylase (TDC), D4H, 
and DAT has been observed in C. roseus cultures after light 
expression.[12‑17] Researches have also shown that the content of  
catharanthine, vindoline, and vinblastine is markedly increased 
by ultraviolet (UV)‑B radiation in C. roseus.[13,18]

Plant growth regulators
Plant growth regulators affect both culture growth and secondary 
metabolite production.

Auxin and cytokinin
Plant growth hormones inhibit the accumulation of  alkaloid, 
while cytokinins act as accelerants. 2,4‑D strongly inhibits 
alkaloid production, essentially during the growth phase.[19] More 
importantly, genes, such as, the 1‑deoxy‑D‑xylulose‑5‑phosphate 
s yn thas e  (DXS )  gene,  1‑deoxy ‑D‑xy lu l o s e ‑5 ‑pho spha t e 
reductoisomerase (DXR) gene, and TDC gene are repressed in the 
suspension‑cultured cells of  C. roseus with 2,4‑D.[20,21] Transferring 
these cell suspensions in a 2,4‑D‑free culture medium gradually 
increases the expression of  these genes.[21,22] Moreover, 
2,4‑D depletion also enhances the 2C‑methyl‑D‑erythritol 
2,4‑cyclodiphosphate synthase (CRMECS) mRNA steady‑state 
level in C. roseus. This gene remains expressed at a low rate in 
the cell suspensions cultured with 2,4‑D.[22] These investigations 
support the regulatory role of  auxin on the methylerythritol 
phosphate (MEP) pathway, leading to the biosynthesis of  the 
TIA terpene moiety, and auxin acts, at least in part, at the MEP 
pathway gene expression regulation level.[20]

Except for 2,4‑D, other auxins such as, 1‑Naphthaleneacetic 
acid (NAA) and indole‑3‑acetic acid (IAA), also downregulate the 
TDC gene in the biosynthetic pathway of  alkaloids. Omission of  
NAA from the growth medium results in the accumulation of  
TDC.[21] Thus, auxin negatively regulates the expression of  the 
genes associated with the terpenoid indole alkaloid biosynthesis 
in C. roseus

On the contrary, cytokinin remarkably enhances the accumulation 
of  alkaloids in Catharanthus cultures. Genes experiments show 
that cytokinin greatly enhances the expression of  the geraniol 
10‑hydroxylase (G10H) gene.[23]

Other plant growth regulators
Enhancement of  catharanthine in the hairy roots and 
accumulation of  vindoline in shoot cultures are observed 
after ethylene treatment.[15] In addition, ethylene applications 
promote the pathways toward ajmalicine, serpentine, and 
tabersonine.[24] Gibberellic acid (GA), similar to 2,4‑D, 
has a strongly negative influence on the accumulation of  
vinblastine, vindoline, and catharanthine.[25] Our previous 
study has found that artemisinic acid, a cadinane‑type 
of  sesquiterpene, can stimulate the biosynthesis of  
catharanthine, vindoline, and vinblastine in C. roseus cultured 
cells. In addition, upregulation of  G10H, SGD, TDC, T16H, 
and D4H was also observed.[26,27]

Signaling molecules
Jasmonates
Jasmonates are plant signaling molecules that play key roles in 
protection against certain pathogens and insects, by switching 
on the expression of  gene‑encoding defense proteins, including 
enzymes involved in the biosynthesis of  toxic secondary 
metabolites.[28]

In the hairy roots, jasmonic acid (JA) is found to be a unique 
elicitor leading to an enhancement in the flux to several branches 
in the indole alkaloid pathway.[29] The accumulation of  ajmalicine, 
serpentine, lochnericine, and hörhammericine are significantly 
increased after the addition of  jasmonic acid.[29]

Methyl jasmonate (MJ) induces several alkaloids in C. roseus 
cultures. After treatment with MJ, ajmaline is increased in the 
cultured plant cells, while both ajmalicine and catharanthine 
are increased in the hairy roots. For shoot cultures, vindoline 
accumulation, induced by MJ, is observed, which is about 6.5‑fold 
compared to the control.[15]

In C. roseus seedlings, the TIA genes exhibit a significant variation 
in the magnitude and timing of  induction by MJ. ORCA3, a 
jasmonate‑responsive APETALA2 (AP2)‑domain transcription 
factor gene, exhibits the greatest increase in the transcript 
levels after MJ treatment.[30,31] MJ‑induced increases in the 
transcript levels of  the TIA genes occur in the following order: 
ORCA3, D4H, STR, TDC, G10H, and cytochrome P‑450 
reductase (CPR).[30]
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Salicylic acid
Salicylic acid (SA) has been known to ameliorate the adverse 
effects of  salinity by improving plant productivity through 
protecting the photosynthetic pigments and producing 
antioxidative compounds and enzymes.[32] It enhances vincristine 
and vinblastine alkaloid production in C. roseus by improving the 
antioxidant defense system.[32]

In seeding, salicylic acid treatment increased the production of  
tabersonine and a higher concentration of  salicylic acid induced 
vindoline accumulation. Meanwhile, the activity of  alkaline 
peroxidase increased 5‑fold.[24]

Nitric oxide
Nitric oxide (NO) is known as a signaling molecule involved 
in the elicitor‑induced defense responses of  plants. Sodium 
nitroprusside (SNP), a donor of  NO, stimulates catharanthine 
formation in C. roseus cells.[33] However, the yield of  catharanthine 
decreases when treated with the JA inhibitor (such as ibuprofen). 
Therefore, NO stimulates the accumulation of  catharanthine, 
which is JA‑dependent.[33]

Precursor feeding
Feeding of  precursors is one of  the most effective strategies to 
increase the production of  important secondary metabolites in 
cells and organ cultures.[34] The results of  the addition of  some 
precursors show positive results on the accumulation of  alkaloids. 
For instance, the accumulation of  ajmalicine and strictosidine is 
significantly enhanced when treated with tryptamine or loganic 
acid.[35]

CONCLUSION

The biosynthesis of  the C. roseus terpenoid indole alkaloid 
has been studied for decades. Although there is tremendous 
progress, there are many steps that are still not profiled. 
To date, C. roseus is the only nature resource for antitumor 
agents, vinblastine and vincristine. However, their content 
in plants is very low. Furthermore, the chemical synthesis is 
far from being applicable for commercial‑scale production. 
The plant cell culture of C. roseus is an alternative resource for 
these valuable medicinal compounds. However, before their 
commercial exploitation, their productivity has to be improved. 
Therefore, different approaches, such as optimization of  culture 
conditions, feeding, and elicitation strategies have been tested, 
to enhance the production of  these compounds. However, 
until now, the yields obtained from the cultures have been 
low. The unclear biosynthesis pathway of  the TIAs is the main 
reason that blocks the progress. Therefore, elucidation of  the 
TIA biosynthesis pathway must be emphasized on greatly and 
some new strategies, such as plant and microbial production, 
may also be employed for the manufacture of  these valuable 
medicinal compounds.
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