A Review: Carissa Congesta: Phytochemical Constituents, Traditional Use and Pharmacological properties

Smt.R.B.Patel Mahila Pharmacy College, Kailash nagar, Bhavnagar Road, Atkot, Gujarat, India

*Author for corresondance:viraldev1985@gmail.com

Abstract
Various herbal drugs individually or in combination have been recommended for the treatment of different disease. The C.congeta commonly known as “karanda” has been recognized in different system of traditional medicine to cure various diseases. It contains several phytochemical constituents belonging to terpenoids category. The root is attributed with bitter, stomachic; antidiarrhoeal, vermifuge and antianthelmintic properties. The unripe fruit is used medicinally as an astringent. The ripe fruit is taken as an antiscorbutic and remedy for biliousness. The leaf decoction is valued in cases of intermittent fever, diarrhoea, oral inflammation and earache. Additionally Congesta has shown wide range of evidences for its cardiotonic, hepatoprotective, free radical scavenging and xantine oxidase inhibitory, histamine releasing, antirhumatic, antibacterial, antiviral and anticonvulsant activity. A higher gross heat value of this species indicates its higher potential to be used as good fuel source.

Key words: Karanda, Phytochemical constituents, Traditional uses, and Pharmacological properties.

INTRODUCTION
Carissa congesta Wight (syn. C. carandas Auct., formerly widely shown as C. carandas L.), belong to Apocynaceae. It is called kerenda in Malaya, karanda in India; Bengal currant or Christ's thorn in South India; namdaeng in Thailand; caramba, caranda, caraunda and perunkila in the Philippines (1). This species is a rank-growing, straggly, woody, climbing shrub, usually growing to 10 or 15 ft (3-5 m) high, sometimes ascending to the tops of tall trees; and rich in white, gummy latex. The branches, numerous and spreading, forming dense masses, are set with sharp thorns, simple or forked, up to 2 in (5 cm) long, in pairs in the axils of the leaves. The leaves are evergreen, opposite, oval or elliptic, 1 to 3 in (2.5-7.5 cm) long; dark-green, leathery, glossy on the upper surface, lighter green and dull on the underside. The fragrant flowers are tubular with 5 hairy lobes which are twisted to the left in the bud instead of to the right as in other species. They are white, often tinged with pink, and borne in terminal clusters of 2 to 12. The fruit, in clusters of 3 to 10, is oblong, broad-ovoid or round, 1/2 to 1 in (1.25-2.5 cm) long; has fairly thin but tough, purplish-red skin turning dark-purple or nearly black when ripe; smooth, glossy; enclosing very acid to fairly sweet, often bitter, juicy, red or pink, juicy pulp, exuding flecks of latex. There may be 2 to 8 small, flat, brown seeds. The karanda is native and common throughout much of India, Burma and Malacca and dry areas of Ceylon; is rather commonly cultivated in these areas as a hedge and for its fruit and the fruit is marketed in villages (2). The karanda was first fruited in the Philippines in 1915 and P.J. Wester described it in 1918 as "one of the best small fruits introduced into the Philippines within recent years." The present review will possibly act as bridge between traditional claim and modern therapy of Congesta.

TRADITIONAL USES
C.congesta is the best known as member of the genus as it has been used as a traditional medicinal plant over thousands of years in the ayurvedic system of medicine as it is practiced on the Indian sub continent. Thus, traditional uses of C.congesta are well established. The root is credited with bitter, stomachic, antidiarrhoeal and antianthelmintic properties. The ripe fruits are utilized in curries, tarts, puddings and chutney. When only slightly under ripe, they are made into jelly. Green, sour fruits are made into pickles in India. With skin and seeds removed and seasoned with sugar and cloves, they have been popular as a substitute for apple in tarts. The unripe fruit is used medicinally as an astringent. The ripe fruit is taken as an antiscorbutic and remedy for biliousness. The fruits have been employed as agents in tanning and dyeing British residents in India undoubtedly favored the karanda as being reminiscent of gooseberries. Karanda leaves have furnished fodder for the tussar silkworm. The leaf decoction is valued in cases of intermittent fever, diarrhoea, oral inflammation and earache. A paste of the pounded roots serves as a fly repellent. The root is employed as a bitter stomachic and vermifuge and it is an
ingredient in a remedy for itchies. The roots contain salicylic acid and cardiac glycosides causing a slight decrease in blood pressure. The white or yellow wood is hard, smooth and useful for fashioning spoons, combs, household utensils and miscellaneous products of turnery. It is sometimes burned as fuel (3, 4).

PHYTOCHEMICAL CONSTITUENTS

The roots of *C. congesta* have yielded a number of volatile principles including 2-acetyl phenol (5, 6). Pal et al have reported a new lignan, carinol from root of *C. congesta* (7). Whereas studies carried out by Rastogi et al have led to isolation of a mixture of sesqui terpenes, namely carissone and carindone as a novel type of C31 terpenoid (8-10). The leaves were reported to have triterpenoid constitutes well as tannins, and a new isomer of urosolic acid namely carissic acid was also found (11, 12). Fruits of this plant were reported to contain a mixture of volatile constituents including 2-phenyl ethanol, linalool, β-caryophylline, isoenamy alcohol, benzyl acetate and a novel triterpenic alcohol, carissol. Enzymatic mild hydrolysis of polar glycoside from the plant yielded odoroside H, digitoxigenin and the sugars D-glucose and D-digitoxose. Moreover, *C. congesta* contains crude protein 13%, polyphenols 7.8%, fixed oil 5.3 % hydrocarbons 58 % and free acid 31.4 %. Higher gross heat values of this species indicate that it can be used as fuel source. Essential oil from *C. congesta* was found to contain coumarin (13).

It has been reported that fresh leaves of *C. congesta* contain four pentacyclic triterpenoids including one new constituent carissin and two hitherto unreported compounds. The structure of the new triterpenoid has been elucidated as 3-β-hydroxy-27-E-feruloyloxyurs-12-en-28-oic acid. Complete assignment of the protons of the compounds has also been made based on 2D NMR studies (14).

![Figure 2: Phytochemical constituents of *C. congesta*](image)

PHARMACOLOGICAL ACTIVITIES

Anticonvulsant action

It has been reported that ethanolic extract of *C. congesta* has powerful anticonvulsant action on electrically and chemically induced seizures, by unknown mode of action (15).

Cardiotoxic activity

The alcoholic extract of roots of *C. congesta* exhibited cardiotoxic activity and prolonged blood pressure lowering effect. An amorphous water-soluble polyglycoside possessing significant cardiac activity has been isolated. The cardiac activity of water-soluble fraction has been attributed to the presence of the glucosides of odoroside (16).

Free radicals scavenging and xanthine oxidase inhibitory activity

The free radical scavenging activity of ethanolic and aqueous extracts of *C. congesta* has been evaluated, in vitro, using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method and compared with ascorbic acid, quercetin and apigenin. The plant has demonstrated good DPPH radical scavenging activity.

Inhibitory effects towards the in-vitro reaction of hypoxanthine and xanthine oxidase (XO) was also carried out in the presence of plant extract, aglycones quercetin, and apigenin along with allopurinol XO inhibitory activity of Plant extracts, was comparable with aglycones but less than allopurinol (17).

Potential Hepatoprotective and Antioxidant activity

It has been proved that *C. congesta* has hepatoprotective and antioxidant action by Chatterjee et al. They have used Wistar albino rats to estimate serum glutamate oxaloacetate transaminase (SGOT), serum gluatamate pyruvate transaminase (SGPT), serum alkaline phosphatase (SALP), uric acid, total protein content and total bilirubin content. They have measured antioxidant action by estimating lipid peroxidation, reduced glutathione (GSH), super oxide dismutase (SOD) and catalase (CAT) activity in liver (18).

Histamine releasing activity

It has been proved that *C. congesta* have histamine releasing effect that was observed by estimating plasma histamine in cats, histamine content in rat hind-limb and histamine content of the lung tissue (19).

Antimicrobial action

It has been reported that ethanolic extract of *C. congesta* has potent antibacterial action against different test bacteria like *B. subtillis*, *S. aureus*, *S. faecalis*, *E. coli*, *P. aeruginosa* and *S. typhimurium*. Moreover ethanol extract has also showed considerable antifungal action (20).

Antiviral action

It has been reported that ethanolic extract of *C. congesta* possesses potent antiviral action against Sindbis virus (SINV) at 3 µg/ml, polio virus (POLIO), at 6 µg/ml, HIV-1, and herpes simplex virus (HSV) at 12 µg/ml (21). It was known that Root of *C. congesta* had antirheumatic property (22). Isolated carissone derivatives exhibited an antziymotic, antibacterial and atropine like spasmylocytic activity (23). The lipase activity of fruit has also been studied (24). An aqueous extract of the root demonstrated antihistaminic, spasmylocytic, cardiotoxic and hypertensive action in a preliminary pharmacological screening (25). It is reported that *C. congesta* has also good antipyretic activity (26).

CONCLUSION

Nowadays, herbal drugs are widely used as curative agent for different ailments. Concentrated extract of *C. congesta* can be found in various herbal preparations which are readily available in the market. *C. congesta* preparations have broad range of distribution in the market and employed by practitioner of natural health for the treatment of rheumatism. In the traditional system of medicine, *C. congesta* plant is used as cardiotoxic, hepatoprotective, free radical scavenger and xanthine oxidase inhibiting agent, histamine releasing agent, antirheumatic, stomachic; antidiarrhoeal, vermifuge, antiinflammatory, astrigent, antiscorbutic, antibacterial,
antiviral and anticonvulsant. Moreover, it has good potential to be used as potent energy source.

REFERENCES