Vietnamese Ginseng (*Panax vietnamensis* Ha and Grushv.): Phylogenetic, Phytochemical, and Pharmacological Profiles

Tung Huu Nguyen1,2, Thuong Thien Phuong3

ABSTRACT

Vietnamese ginseng (VG) (*Panax vietnamensis*, Araliaceae) is indigenous in the central highlands of Vietnam and the southernmost distribution in the *Panax* genus. Compared to the long history of use and overall research on Korean ginseng and American ginseng, the up-to-date publication on VG is relatively much less extensive. The studies on VG have been reported focusing on phylogenetic analysis, phytochemistry, and pharmacological activity. To date, there is no systematic review of VG. In this review, the phytochemical profile including 52 individual saponins of VG is described, it becomes noteworthy that ocktillol-type ginsenosides including majonoside R1 and majonoside R2 are unique and dominate in the title plant of the *Panax* spp. In addition, various pharmacological activities of VG extracts and components are summarized and discussed.

Key words: Araliaceae, ginseng, ginsenoside, majonoside R2, *Panax vietnamensis*, Vietnamese ginseng

INTRODUCTION

Vietnamese ginseng (VG) (*Panax vietnamensis* Ha and Grushv.) [Figure 1] is one of 11 *Panax* species in the Araliaceae family, which was found in the highlands of Central Vietnam, especially surrounding Ngoc Linh Mountain, in 1973 and recognized officially in 1985.[1,11] This is the southernmost species in distribution of *Panax* genus and in respect to mean similarity of the nucleotide sequence of 18S ribosomal RNA gene and matK gene sequence of VG and other *Panax* species, Komatsu et al. revealed the phylogenetic tree that VG was sympatric with other *Panax* species and had close relationship with *Panax japonicus* and *Panax pseudoginseng*.[4] In another study, based on the similarity of the nucleotide sequence of 18S ribosomal RNA gene and matK gene, a variety of VG, *P. vietnamensis var. fuscidicus* was discovered in the Southern part of Yunnan Province, China.[9] Very recently, the complete chloroplast genome sequence of VG was generated by de novo assembly using whole-genome next-generation sequences, which further supports that VG was in the same clade with the well-known *Panax* members PG, AG, and PN.[6]

Phylogeny of Vietnamese Ginseng

Phylogenetic analysis of VG has been studied lately following researches on chemical constituents and pharmacological effects. In 2001, based on the analyses of 18S ribosomal RNA gene and matK gene sequence of VG and other *Panax* species, Komatsu et al. revealed the phylogenetic tree that VG was sympatric with other *Panax* species and had close relationship with *Panax japonicus* and *Panax pseudoginseng*.[4] In another study, based on the similarity of the nucleotide sequence of 18S ribosomal RNA gene and matK gene, a variety of VG, *P. vietnamensis var. fuscidicus* was discovered in the Southern part of Yunnan Province, China.[9] Very recently, the complete chloroplast genome sequence of VG was generated by de novo assembly using whole-genome next-generation sequences, which further supports that VG was in the same clade with the well-known *Panax* members PG, AG, and PN.[6]

Chemical Constituents

The published phytochemical results have been spotlighted on the underground part (root and rhizome) of VG. Since first report in 1993,[7] to date, 52 individual saponins mostly belonging to dammarane triterpene type have been characterized yet, and they can be further classified into protopanaxadiol (PPD), protopanaxatriol (PPT) and ocktillol (OT) subtypes except for two oleanane-type saponins (ginsenoside Ro and hemslodise Ma3) [Figure 2a-c].[7–11]
Among them, ginsenoside Rb\(_1\) (G-Rb\(_1\)), Rb\(_2\) (G-Rb\(_2\)), Rd (G-Rd), Re (G-Re), Rg\(_1\) (G-Rg\(_1\)), majonoside R1 (MR1), MR2, notoginsenoside R\(_1\), vinaginsenoside R1 (VR1), vinaginsenoside R2, and vinaginsenoside R11 are the major saponins in VG [Figure 2b]. In raw or nonprocessed material, it became evident that saponin content of VG is not only higher in yield but also more divert in both structure skeleton and number than those of AG and KG. In AG and KG roots, the numbers of saponins are <40 and belonging to PPD and PPT types. In particular, VG dominates OT-type saponins such as MR1, MR2, VR1, and VR2 with >50% total saponin content and that MR2 with very high yield (ca 5%) is remarkable [Figure 3].\(^{12}\) These findings could be implicated in chemotaxonomy of VG and Panax species.

Ginseng has been used more widely in forms of red ginseng by heating process or steaming. Likewise, steamed VG was recently studied and upon steaming, the results showed that contents of polar ginsenosides, such as Rb\(_1\), Rc, Rd, Re, and Rg\(_1\), were rapidly decreased, whereas less polar ginsenosides such as Rg\(_3\), Rg\(_5\), Rk\(_1\), Rk\(_3\), and Rh\(_4\) were increased by quantitative high-performance liquid chromatography HPLC analysis.\(^{13}\) However, OT saponins, which have no glycosyl moiety at the C-20 position, were relatively stable on steaming.\(^ {13}\)

Pharmacological Activities

Anticancer activity

The most studied pharmacological activity anticancer of VG is both cancer chemopreventive and cancer chemotherapeutic effects and correlated with OT ginsenosides.

Yamasaki reported that the crude VG extract and its major saponin components (MR1, MR2, G-Rb\(_1\), G-Rb\(_2\), G-Rd, G-Re, and G-Rg\(_1\)) showed in vitro the inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by whether 12-0-tetradecanoylphorbol-13-acetate (TPA) or fumonisin B\(_1\) without toxicity on normal cell.\(^ {14}\) It is noteworthy that MR2, as the major saponi, exhibited the strongest inhibitory effects on EBV-EA activation and be relatively more active than glycyrrhizic acid from licorice which is known as a potent antitumor promoter.\(^ {15}\) In addition, in vivo study revealed the inhibitory effect of MR2 on the two-stage carcinogenesis test (initiation and promotion) of several tumor models of mouse skin induced by 7,12-dimethylbenza\[a\] anthracene/TPA, nitric oxide/TPA, and peroxynitrite/TPA and mouse hepatic liver induced by N-nitrosodiethylamine/phenobarbital.\(^ {16}\)

VG showed antiproliferative activity against A549 lung cancer cells, and upon steaming, the antiproliferative activity of the convention product significantly increased. Enhanced anticancer potential was evidenced by chemical degradation and conversion of the original saponins to less polar ginsenosides such as Rg\(_3\), Rg\(_5\), Rk\(_1\), Rk\(_3\), and Rh\(_4\) during the steaming process except for the content of OT saponins, which are reasonably thermostable.\(^ {15}\)

The cellular mechanism of VG against cancer was also studied. The effects of MR2 on the cell cycle of Raji cells treated with TPA were examined by flow cytometry and found out the evidence of influencing in the S and G2+M phases.\(^ {14,16}\) Taken together, the major OT saponin content MR2 in VG had potential in chemopreventive therapeutics.

Hepatoprotective activity

Another pharmacological activity of VG and its constituents is hepatoprotective, which has been investigated in both cell and tissue models. In 2000, Nguyen et al. found that the saponin extract of VG partly prevented CCl\(_4\)-induced hepatotoxicity in mice.\(^ {17}\) In a following study, Tran et al. reported also a potent hepatocytotoxic effect of the VG
Antistress activity

Traditionally, VG has been used to enhance and recover physical strength, which was closely related to antistress activity. The antistress activity of VG was first evidenced from antifatigue and adaptogenic effects.[11] In following study, Huong et al. reported the positive effects of VG and its major saponin, MR2, on behavioral and pathophysiological responses induced by psychological stress in mice using the communication box method and underlying neuronal mechanisms.[21–26] Pretreatment with VG extract and MR2 suppressed the antinociception caused by the stress. Since both flumazenil and picrotinox completely blocked the antagonistic effects of MR2 on opioid antinociception, it is likely that MR2 suppresses the stress-induced antinociception due to the modulation of the activity of opioid systems.[23–25] Similarly, pretreatment with VG extract and MR2, diazepam, or naloxone exhibited protective actions against the stress-induced gastric lesions. In addition, VG extract, VG saponin, and MR2 were found to restore the hypothalamic activity of pentobarbital to the level of unstressed control mice. In mechanism, the effect of MR2 is likely acting as antagonist on the GABA_A-receptor complex.[21–26]

These findings revealed the antistress effects of VG extract, and especially, MR2, in psychosomatic disorders caused by psychological stress[25] and further support its potential in medicinal use.

CONCLUSIONS AND FUTURE PERSPECTIVES

In general, in correlation with other Panax sp., the published result on VG has been less extensive in all research aspects. In this chapter, we summarized the up-to-date profile of phylogeny, phytochemistry, and pharmacological activity of VG. A total of 52 ginsenosides have been identified from raw underground parts of VG and the OT saponins are typical constituents. The chemical constituents of steamed VG and the aerial parts (leaf, stem, and flower) have whether just preliminarily analyzed or not been carried out systematically, together with development of chromatographic techniques, there is interesting space for more studies and potential of novel compounds from VG.

Certain pharmacological actions of VG have been observed on the central nervous and immune systems as evidenced by antistress, anti-cancer, and hepatoprotective activities in this review. There are general lacks of not only evaluation of various pharmacological activities such as effects on the endocrine and cardiovascular system but also respective underlying mechanism of biological activities of detailed constituents/extracts from VG also should become interests in natural product researchers.

It is the fact that source of VG is an issue, which is mainly from nature or natural growing other than field cultivation. Once sustainable biotechnological production of VG is facilitated, the following studies for utilization of VG will become feasible.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to the Vietnam National Foundation for Science and Technology Development and Phoenkia University for financial support to conduct this research.

Financial support and sponsorship

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 108-YS.05-2019.01.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

11. Tran QL, Adnyana IK, Tezuka Y, Nagaoaka T, Tran QK, Kadotta S. Triterpene saponins from Vietnamese ginseng (Panax vietnamensis) and their hepatoprotective

SUMMARY

Vietnamese ginseng (*Panax vietnamensis*, Araliaceae) is indigenous in the central highlands of Vietnam and the southernmost distribution in the Panax genus. Compared to the long history of use and overall research on Korean ginseng and American ginseng, the up-to-date publication on Vietnamese ginseng is relatively much less extensive. The studies on Vietnamese ginseng have been reported focusing on phylogenetic analysis, phytochemistry and pharmacological activity. To date, there is no systematic review of Vietnamese ginseng. In this review, the phytochemical profile including 52 individual saponins of Vietnamese ginseng is described, it becomes noteworthy that ocfotilol-type ginsenosides including majonoside R1 and majonoside R2 are unique and dominate in the title plant of the Panax spp. In addition, various pharmacological activities of Vietnamese ginseng extracts and components are summarized and discussed.

GRAPHICAL ABSTRACT

ABOUT AUTHORS

Dr. Nhtung serves as a Lecturer/Researcher in the PHENIKAA University, Hanoi, Vietnam. He obtained the Ph.D title of Pharmacy, the major of medicinal chemistry from Chungnam National University, Korea in 2010, and studying natural products chemistry. Following the Ph.D. study, he did postdoctoral research in Japan under the postdoctoral fellowship of the Japan Society for the Promotion of Science (JSPS). His works/researches focus on the identification of active botanical constituents and the evaluation of their pharmacological activities. He has published more than 100 publications including research articles, reviews and book chapters in the fields of phytochemistry and natural medicine.

Associate Professor PT Thuong is a Senior Researcher in the National Institute of Medicinal Materials (NIMM) and Vietnam-Korea Institute of Science and Technology (V-KIST), Hanoi, Vietnam. He obtained the Ph.D title of Pharmacy, the major of Pharmacognosy from Chungnam National University, Korea in 2006. Following the Ph.D. study, he had experienced as postdoctoral researcher in Korea (2006-2008) and visiting scientist in Japan (2010-2011). His works/researches focus on the bioactive constituents from various medicinal materials and herbal formula. He has published more than 150 publications including research articles, reviews and book chapters in the fields of pharmacognosy and traditional medicine.