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ABSTRACT
Xanthones are well known for their significant biological activities and can be found in many herbal medicines. These compounds have the ability to 
regulate various inflammatory activities and signaling pathways in immune cells, especially macrophages. Macrophages are innate immune cells that can 
either fuel or dampen an inflammatory response depending on their activation states and play an active role in the development of inflammatory diseases 
such as atherosclerosis, arthritis, cancer, and diabetes. Many traditional medicines used as a remedy for these diseases contain xanthones, and their 
bioactivities may be partially attributed to their ability in regulating macrophage responses. In this review, we discuss the in vitro and in vivo findings on the 
effects of xanthones on different macrophage immune functions including nitric oxide and cytokine production, migration, polarization, and phagocytosis. 
Their specific modes of action are highlighted whenever known. We also discuss the potential and challenges in using xanthones as a therapeutic option 
in various inflammatory diseases. It is hoped that this review can pave the way for future research that focuses on developing xanthones as specific 
macrophage‑targeted therapeutics.
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INTRODUCTION
Xanthones are secondary metabolites that can be isolated from many 
higher plant, fungi, and lichen families. A previous study reported that 
from 168 species of herbal medicinal plants investigated between 1988 
and 2016, 24 families were shown to contain xanthones.[1] They have been 
reported to be the main constituent of many traditional medicines, such 
as Securidaca inappendiculata Hassk, which is used to treat rheumatoid 
arthritis[2] and the yellow gum‑resin secreted from Garcinia hanburyi, 
which is used to treat infected wound, pain, and edema.[3] Various health 
supplements containing xanthones are available in the market, and the 
most common source of xanthones in these products is from either 
the juice or extract of Garcinia mangostana L., which is also known as 
the mangosteen fruit in Southeast Asia. A few studies investigating the 
effects of consuming mangosteen products have reported beneficial 
effects, including having increased antioxidant capacity and reduced 
levels of C‑reactive protein, which is an inflammatory marker.[4‑6]

XANTHONE RESEARCH
Each year, discoveries of new xanthones isolated from natural products 
continue to be reported in journal articles. However, not many of these 
discoveries have been followed through for drug development, given that 

there is limited data available on their detailed pharmacological actions, 
cellular specificity, molecular targets, and bioavailability. Each xanthone 
molecule has a simple three‑ring skeleton. They differ from one another 
regarding the type and position of substituents present on the core 
ring, which contribute to their distinct pharmacological properties. 
A  previous study classified xanthones from natural sources into six 
groups, which are the simple xanthones, xanthone glycosides, prenylated 
xanthones, xanthonolignoids, bisxanthones, and miscellaneous 
xanthones, which comprise xanthones with substituents other than the 
aforementioned ones.[7] Knowledge on xanthone structures has led to 
the design of a few potential therapeutics that are undergoing clinical 
trials as cancer treatment, such as 5,6‑dimethylxanthenone‑4‑acetic 
acid  (DMXAA)[8] and gambogic acid.[9] Advances in the field of 
medicinal chemistry have also enabled structural modifications to be 
made on xanthones isolated from natural product to create xanthone 
derivatives with better pharmacological properties such as increased 
aqueous solubility and cytotoxicity effect against cancer cells.[10]

Majority of the available literature have so far reviewed the role of 
xanthones as chemopreventive and chemotherapeutic agents.[11,12] This 
is because xanthones have been shown to exert cytotoxic effects on 
various cancer cell lines without apparent toxicity on non‑cancer cells, 
potentiating their use as cancer drugs. Other studies have reviewed the 
antioxidant,[13] antimicrobial,[14] and cardiovascular protective effects of 
xanthones,[15] but so far, none had specifically reviewed on their ability 
to modulate immune responses. Many related studies on the effects of 
xanthones on immune responses have been performed using mice and 
human macrophage models. Specific macrophage subpopulations have 
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been linked to the development of various diseases that are associated 
with chronic inflammation.[16] In view of this, there is now considerable 
interest in designing specific therapeutics or compounds that can 
modulate the functions of macrophages toward desirable clinical 
outcomes.[17] In this review, we aim to highlight the specific effects of 
xanthones on various macrophage functions in distinct macrophage 
models and their underlying mechanisms, based on in  vitro and 
in  vivo studies. Their potential use as immunomodulatory agents that 
specifically target macrophage functions to alter disease outcomes, and 
potential challenges, will also be discussed.

MACROPHAGE AND MACROPHAGE‑TARGETED 
THERAPIES
Macrophages are heterogeneous in nature, where each organ has 
its own specialized resident macrophage population with distinct 
morphology and function. Depending on the stimuli that they receive 
from the environment, they can be further activated into either 
pro‑inflammatory  (M1) or anti‑inflammatory  (M2) macrophages. 
The physiological functions of macrophages include recognizing 
and killing pathogens, initiating and promoting the resolution of an 
inflammation, presenting antigens to T‑cells, and clearing of host 
apoptotic cells. Due to their major involvement in chronic inflammation 
that manifests in various diseases, they have become the main target 
for new anti‑inflammatory therapeutics. Various macrophage‑targeting 
approaches have been designed, such as reducing their production of 
inflammatory mediators, decreasing macrophage recruitment through 
disrupting chemokine gradient, and changing their polarization status 
between M1 and M2.[18] Macrophage‑targeted therapy is a relatively new 
field of research and a few limitations to currently available therapies have 
been identified, including the development of resistance to the drugs and 
high cost. Thus, it is important to find new sources of therapeutics, such 
as bioactive compounds from natural sources, which can potentially be 
developed into macrophage‑targeted therapies in the future.

MOLECULAR EFFECTS OF XANTHONES ON 
MACROPHAGE FUNCTIONS
Nitric oxide production
Nitric oxide (NO) is produced by many cell types including endothelial 
cells and macrophages. Pro‑inflammatory stimuli such as cytokines 

and lipopolysaccharide can significantly enhance the production of 
this enzyme, thus NO levels are usually upregulated during infection 
and inflammation. Excessive and sustained NO production has 
been associated with the development of Alzheimer’s disease,[19] 
inflammatory bowel disease,[20] neurodegeneration,[21] and enhanced 
tumor growth.[22] Many xanthones and their derivatives were shown to 
have low‑to‑intermediate effects in the inhibition of NO production by 
in different macrophage models, including human J774 macrophages, 
RAW264.7 murine macrophages, and BV2 human microglia cells 
(brain macrophages).[23‑27] These compounds include dulcisxanthone B, 
5,9‑dihydroxy‑8‑methoxy‑2,2‑dimethyl‑7‑(3‑methyl‑but‑2‑enyl)‑2H, 
6H‑pyrano‑[3,2b]‑xanthone, α‑mangostin, cudratricusxanthone A, and 
1,3,6,7‑tetrahydroxy‑8‑prenylxanthone  (TPX) that were isolated from 
Cratoxylum, Garcinia, and Cudrania plant genus [Table 1].
Despite their potential as potent NO inhibitors, only few studies 
have studied the underlying mechanisms of inhibition in detail, 
mostly in animal cell models. A  few naturally occurring xanthones 
have been reported to suppress inducible NO synthase  (iNOS) 
production, which is one of the main enzymes involved in NO 
production by macrophages. Mangiferin, α‑mangostin, β‑mangostin, 
garcinoxanthone B, and 1,3,5,7‑Tetrahydroxy‑8‑isoprenylxanthone 
were shown to specifically inhibit iNOS production in RAW 264.7 
macrophages.[27‑31] In addition, it was reported that β‑mangostin and 
1,3,5,7‑Tetrahydroxy‑8‑isoprenylxanthone can reduce prostaglandin 
E2  (PGE2) production by macrophages without affecting their 
viability.[27,30] PGE2 is an enzyme that can stimulate iNOS activity to 
promote NO production.

Cytokine production
Macrophages can produce high levels of pro‑  and anti‑inflammatory 
cytokines through various signaling pathways. Activated kinase proteins 
in the mitogen‑activated protein kinases pathway can trigger a signaling 
cascade that results in the activation and translocation of nuclear 
factor‑kappa B  (NF‑κB) into the nucleus to induce the transcription 
of pro‑inflammatory cytokine genes. NF‑κB activation is central to the 
pathogenesis of various chronic diseases, including asthma, rheumatoid 
arthritis, and atherosclerosis,[32] thus many potential anti‑inflammatory 
compounds were tested for their ability to inhibit its activation.
Many studies have claimed that xanthones are anti‑inflammatory 
because they can decrease pro‑inflammatory cytokine production 

Table 1: The effects of xanthones on macrophage nitric oxide production

Compound (minimum concentration to exert an effect, if known) Source Macrophage model Summary of findings Reference
Dulcisxanthone B Cratoxylum formosum 

spp. pruniflorum (roots)
RAW264.7 murine 
macrophages

IC50=3.9 μM Boonnak 
et al., 2006[23]

5,9‑dihydroxy‑8‑methoxy‑2,2‑dimethyl‑7 
‑(3‑methyl‑but‑2‑enyl)‑2H,6H‑pyrano‑[3,2b]‑xanthone

Cratoxylum formosum 
spp. pruniflorum (roots)

RAW264.7 murine 
macrophages

IC50=4.3 μM Boonnak 
et al., 2006[23]

α‑mangostin from methanol extract (50 μM) Garcinia cowa RAW264.7 murine 
macrophages

83.4% inhibition of NO 
production

Wahyuni 
et al., 2017[24]

Cudratricusxanthone A (2.5 μM) Cudrania 
tricuspidata (root barks)

BV2 human 
microglia cells

Inhibition of NO 
production comparable 
to 10 μM butein

Yoon et al., 
2016[25]

TPX (5 μM) Garcinia 
mangostana (pericarps)

RAW264.7 murine 
macrophages

Inhibition of NO 
production and iNOS 
mRNA expression 
in a dose‑dependent 
manner

Li et al., 
2018[26]

1,3,5,7‑Tetrahydroxy‑8‑isoprenylxanthone (12.5 μM) Garcinia esculenta (twigs) RAW264.7 murine 
macrophages

Dose‑dependent 
inhibition of LPS‑ and 
IFN‑induced NO 
production

Zhang et al., 
2015[27]

NO=Nitric oxide, TPX=1,3,6,7‑tetrahydroxy‑8‑prenylxanthone, iNOS=Inducible nitric oxide synthase, LPS=Lipopolysaccharide
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by macrophages  [Table  2]. However, the underlying mechanisms of 
action are only known for a few of these compounds. Mangiferin, 
which is a natural phenolic xanthonoid, is a potent inhibitor of NF‑κB. 
Mangiferin at 10 μg/mL was shown to completely inhibit tumor necrosis 
factor‑alpha  (TNF‑α)‑induced activation of NF‑κB in U‑937 human 
macrophages.[37] Pretreatment of U‑937 macrophages with α‑  and 
γ‑mangostin was reported to inhibit lipopolysaccharide‑induced 
phosphorylation of MEK, c‑Jun N‑terminal kinases, signal‑regulated 
kinases and p38 and attenuated the activation of their downstream 
targets.[35] The same study reported that γ‑mangostin was able to 
prevent IκB‑α degradation, which is the inhibitory subunit of NF‑κB 
that needs to be degraded before NF‑κB activation. Mangiferin was also 
shown to inactivate NLRP3 inflammasome in RAW264.7  cells, which 
is a complex required for the pro‑inflammatory IL‑1  β secretion.[38] 
Excessive IL‑1 β production has been associated with the development 
of neuroinflammation and autoimmune diseases such as rheumatoid 
arthritis. Another compound, cudratricusxanthone A, was reported 
to inhibit the phosphorylation of the inhibitory subunit  IκB‑α in a 
microglial cell model.[25]

Apart from directly suppressing the production of pro‑inflammatory 
cytokines, xanthones may also exert indirect effects to mediate an 
anti‑inflammatory response. DMXAA can activate interferon regulatory 
factor 3 signaling pathway in mice peritoneal macrophages, which 
promote interferon‑beta  (IFN‑β) production.[39] IFN‑β has been used 
to treat multiple sclerosis because of its ability to dampen an immune 
response.[40] Cudratricusxanthone A can induce the expression of 
heme oxygenase‑1 in RAW264.7 mice macrophages, which led to the 
suppression of pro‑inflammatory cytokine production.[34] An interesting 
observation from previous literature was that the effects of xanthones 
on cytokine production by macrophages are dependent on macrophage 

type. For example, α‑mangostin has also been shown to promote instead 
of suppressing the production of TNF‑α by monocyte‑derived human 
macrophages.[33] In addition, DMXAA promoted the secretion of a 
plethora of cytokines from tumor‑associated macrophages, including the 
pro‑inflammatory IFN‑γ and TNF‑α.[41]

Macrophage migration
Macrophages can migrate in response to chemokines and cytokines to 
the site of tissue damage. While macrophage migration is crucial to allow 
the clearance of pathogens and initiation of tissue repair, the recruitment 
of pathological macrophage subpopulations have also been implicated 
in the development of diseases such as neuroinflammatory diseases, 
atherosclerosis, and diabetes. Xanthones can prevent the accumulation 
of macrophages through several mechanisms  [Table  3]. TPX from 
pericarps of G. mangostana was shown to inhibit mRNA expression of 
monocyte chemoattractant protein‑1 (MCP‑1), MIP‑1α, CXCL10, and 
CX3CL1 in RAW264.7 macrophages.[26] The aforementioned molecules 
are chemotactic molecules that can attract lymphocytes, monocytes, 
and macrophages. TPX and α‑mangostin also inhibited migration 
of macrophages toward adipocyte‑conditioned media,[26,36] thus has 
potential in preventing macrophage accumulation in adipose tissues in 
obesity and diabetes. α‑mangostin and γ‑mangostin were reported to 
inhibit expression of CXCL10 in U937 human macrophage model,[35] 
while DMXAA was shown to inhibit MCP‑1 and CXCL10 expression 
in mice peritoneal and bone marrow‑derived macrophages.[42] A few 
synthesized xanthones have been shown to inhibit the expression 
of intercellular adhesion molecule‑1  (ICAM‑1) on endothelial cells, 
which is a molecule required for transmigration of immune cells across 
the endothelium. For example, 1,4‑dihydroxyxanthone at 65 μg/mL 
was shown to inhibit up to 86% of ICAM‑1 expression.[43] Decreased 

Table 2: The effects of xanthones on macrophage cytokine production

Compound (minimum concentration to exert an effect, if known) Source Macrophage model Summary of findings Reference
α‑mangostin (10 μM) Garcinia mangostana 

(pericarp and fruit hull)
THP‑1 human 
macrophages

Decreased IL‑8 
production

Gutierrez‑Orozco 
et al.[33]

α‑mangostin (4.5 μM) Garcinia mangostana 
(pericarp and fruit hull)

Human 
monocyte‑derived 
macrophages

Increased TNF‑α 
production

Gutierrez‑Orozco 
et al.[33]

Cudratricusxanthone A (5μM) Cudrania tricuspidata 
(root barks)

RAW264.7 murine 
macrophages

Decreased production 
of TNF‑α and IL‑1β

Jeong et al.[34]

Cudratricusxanthone A (1.3 μM for TNF‑α inhibition, 2.5 μM for 
IL‑1β inhibition and 0.6 μM for IL‑12 inhibition)

Cudrania tricuspidata 
(root barks)

BV2 human 
microglial cells

Decreased mRNA 
levels of TNF‑α, IL‑1β 
and IL‑12

Yoon et al.[25]

1,3,5,7‑Tetrahydroxy‑8‑isoprenylxanthone (12.5 μM) Garcinia esculenta 
(twigs)

RAW264.7 murine 
macrophages

Decreased mRNA 
levels of TNF‑α, 
IL‑12p35, IL‑12p40, 
and IL‑6, decreased 
IL‑6 production

Zhang et al.[27]

α‑mangostin (10 μM) and γ‑mangostin (10 μM) Garcinia mangostana U937 human 
macrophages

Decreased mRNA 
levels of TNF‑α, IL‑6, 
and IP‑10

Bumrungpert 
et al.[35]

TPX (5 μM) Garcinia mangostana 
(pericarp)

RAW264.7 murine 
macrophages

Inhibited production 
of TNF‑α and IL‑6 
in a dose‑dependent 
manner
Decreased mRNA 
levels of TNF‑α, IL‑6, 
and IL‑1β at 20 μM

Li et al.[26]

α‑mangostin (25 μM/mL) Chengdu Biopurify 
Phytochemicals Ltd., 
China

RAW264.7 murine 
macrophages

Decreased mRNA 
levels of TNF‑α, IL‑6 
and IL‑1β, increased 
mRNA levels of IL‑10

Kim et al.[36]

TPX=1,3,6,7‑tetrahydroxy‑8‑prenylxanthone, IL=Interleukin
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ICAM‑1 expression may block the transmigration of monocytes, which 
are the precursors of tissue macrophages, thus reduce the number of 
macrophages in pathological lesions. The authors proposed that the effect 
on ICAM‑1 expression may be mediated by the hydroxy substitution on 
the xanthone nucleus, potentially because they can be oxidized to form 
stable quinonoid.[43]

Macrophage polarization
Macrophages can be polarized into two different activation states, 
resulting in either M1 or M2 subpopulations. M1 are generally 
pro‑inflammatory in nature and are involved in infection clearance, 
while M2 are primarily involved in tissue repair. Apart from 
performing their homeostasis functions, different macrophage 
subpopulations have been associated with pathology in various 
diseases.[44] For example, in atherosclerosis, M1 macrophages were 
reported to contribute to plaque progression, while M2 macrophages 
participate in plaque regression. Thus, various therapies to decrease 
macrophage infiltration and to change their polarization status 

have been designed, in the hope of altering the course of disease 
progression.[45]

There are only a few studies which investigated the effects of xanthones 
on macrophage polarization. A previous study found that treatment of 
mice with TPX from G. mangostana led to polarization of macrophages 
in adipose tissue toward M2 phenotype.[26] Increased numbers of M1 
macrophages in adipose tissue can promote inflammation, leading to 
insulin resistance in obesity.[46] They reported increased mRNA levels of 
ARG1 and CD206 and decreased levels of CD11c, which are characteristics 
of M2 macrophages. Similarly, α‑mangostin was also shown to increase 
CD206 mRNA levels in macrophages from white adipose tissue of obese 
mice, with a corresponding decrease in CD11c levels.[36] In another study, 
mangiferin isolated from leaves of Mangifera indica Linn. at 100 μmol/L 
was reported to decrease the expression of M1 macrophage markers CD80 
and CD86, in addition to reducing expression of interferon regulatory 
factor 5, which is a transcription factor that can activate pro‑inflammatory 
genes in macrophages [Figure 1].[47] In contrast, DMXAA, which is an 
antivascular agent that can prevent tumor development, was reported to 
polarize macrophage activation status from M2 to M1 phenotype.[48] M2 
macrophages are implicated in tumor progression, by promoting growth 
of tumor and its dissemination. Gambogic acid, which is a xanthonoid, 
was reported to decrease the expression of IL‑6 by RANKL‑induced M1 
macrophages, which subsequently inhibited their differentiation into 
osteoclasts.[49] Osteoclasts are involved in bone resorption, leading to 
the breakdown of bone tissues and causing pathology in diseases such as 
multiple myeloma.

Macrophage phagocytosis ability
Macrophages are professional phagocytes responsible for eliminating 
pathogens, tumor cells, and cellular debris. A previous study has reported 
enhanced phagocytosis of ascitic fibrosarcoma cells by peritoneal 
macrophages from mangiferin‑treated mice.[50] Similarly, in another 
study, mangiferin was shown to enhance phagocytosis ability of murine 
peritoneal macrophages when stimulated with various phagocytic targets 
such as latex beads, red blood cells, and tumor cells.[51] It remains to be 

Table 3: The effects of xanthones on macrophage chemokine production and migration

Compound (minimum concentration to exert an effect, if known) Source Macrophage model Summary of findings Reference
TPX (20 μM) Gariciania 

mangostana 
(pericarp)

RAW264.7 murine 
macrophages

Inhibited mRNA 
expression of MCP‑1, 
MIP‑1α, CXCL10 and 
CX3CL1
Inhibited transwell 
migration of 
RAW264.7 
macrophages towards 
adipocytes

Li et al.[26]

α‑mangostin (25 μM/mL) Chengdu 
Biopurify 
Phytochemicals 
Ltd., China

Murine peritoneal 
macrophages and 
RAW264.7 murine 
macrophages

Inhibited 
transmigration of 
these macrophages 
with comparable 
potency to CCR2 
inhibitor

Kim et al.[36]

α‑mangostin (3 μM) and γ‑mangostin (3 μM) Garcinia 
mangostana

U937 human 
macrophages

Inhibited mRNA 
expression of 
IP‑10 (CXCL10) when 
stimulated with LPS

Bumrungpert 
et al.[35]

DMXAA Not available Mouse peritoneal 
and bone 
marrow‑derived 
macrophages

Decreased mRNA 
and protein levels of 
MCP‑1 and IP‑10

Yu et al.[42]

MCP‑1=Monocyte chemoattractant protein‑1, DMXAA=5,6‑dimethylxanthenone‑4‑acetic acid, LPS=Lipopolysaccharide, 
TPX=1,3,6,7‑tetrahydroxy‑8‑prenylxanthone

Figure 1: A summary of the effect of xanthones on macrophage functions
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investigated if xanthones can enhance the phagocytosis of pathogenic 
microorganisms. If proven, hence, xanthones have the potential to be 
developed into antimicrobial agents that are not only cytotoxic against 
various pathogens[52,53] but also have the ability to enhance phagocytosis 
by macrophages to accelerate infection clearance.

In vivo studies
While xanthones have been shown to possess various bioactive properties 
in  vitro, it is of greater interest to investigate if these effects can be 
replicated in  vivo in various disease settings. In doxorubicin‑mediated 
neuroinflammation model, mangiferin was reported to reduce 
the brain damage by reducing TNF‑α production and oxidative 
stress.[54] In adjuvant‑induced arthritis model, xanthones, particularly 
1, 7‑dihydroxyl‑3‑4‑dimethoxyl‑xanthone, showed good potential as 
antirheumatic agent due to their potent anti‑inflammatory effects in 
downregulating IL‑1, TNF‑α, and MCP‑1 production.[55] α‑mangostin 
and γ‑mangostin were able to inhibit tumor growth in experimental colon 
cancer[56] and mammary cancer.[57] In experimental gastric ulcer, xanthones 
such as 7‑preniljacareubin and 1,3,5,6‑tetrahydroxy xanthone were reported 
to exert anti‑ulcer activity through their ability to promote anti‑oxidative 
effects and prevent TNF‑α production.[58] However, in experimental 
ulcerative colitis, it was reported that xanthones may exacerbate the 
condition, leading to greater colonic inflammation and injury.[59] Further 
studies are required to understand if any of these effects can be partly 
attributed to xanthones’ role in modulating macrophage functions.

CONCLUSION
Xanthones are a class of compounds with extensive and promising 
pharmacological properties. Their ability to modulate macrophage 
functions suggest that they may be useful in treating various 
diseases where macrophages have been implicated in causing 
pathology. In addition, xanthones with proven bioactivities such 
as anti‑inflammatory effects may be useful as a therapeutic option 
in more than one inflammatory disease due to their general effects 
on macrophage function. However, to fully harness the therapeutic 
potential of xanthones, there are several areas of future research that 
require attention. Apart from screening xanthones for their potential 
bioactivities, studies should also focus on unraveling the exact biological 
targets of different xanthone compounds and mechanisms underlying 
these bioactivities. The functional groups on the xanthone skeleton that 
contribute to their functional activity should be compared and studied in 
detail. For example, it was proposed that the position of hydroxyl group 
within the xanthones from Cudrania tricuspidata and the presence of a 
catechol moiety may determine its ability to inhibit NO production.[60] 
In addition, there is a need to investigate the bioavailability of specific 
xanthones in vivo given their poor aqueous solubility and to find ways to 
delivery xanthones to target host cells. For example, nanoencapsulation 
of xanthone and 3‑methoxyxanthone in poly (DL‑lactide‑co‑glycolide) 
significantly enhanced the inhibition of NO production by macrophages, 
with approximately 74% increase in inhibition.[61] Finally, because 
macrophages exist in different activation states and there are clear 
differences between human and mice macrophages, there is a need to 
carefully select and justify the use of each macrophage model when 
studying the effects of xanthones on macrophages.
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