PHCOG REV.: Review Article Scientific alternative approach in Diabetes-An overview Munish Garg^{*1} and Chanchal Garg²

¹Assistant Director, All India Council for Technical Education, East tower, NBCC Place, Lodhi Road, New Delhi-110003, India. ²Department of Pharmachemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India. * Address for correspondence: 011-24369633 ; 09958659859 ; <u>mgarg2006@gmail.com</u>

Abstract

Several attempts have been made in search of a suitable formulation for diabetes mellitus all over the world. Although, allopathic treatment helps to control the disease to an extent but regular medication and constant medical supervision always leads to non patient compliance and compels them to look for alternative measures. Out of them, herbal drugs seem to be promising, as scientific analysis of several plants reveal that they possess enormous therapeutic capabilities that modern medicines is searching for. Moreover, due to affordability especially in developing countries where resources are meager and where the coverage by health service is limited, more and more researchers are now working in this direction. This paper provides a general account of dietary management, physical activity with main focus on scope of herbal drugs and a comprehensive analysis of plants with proven antidiabetic activity that may provide insights for future study and development of herbal drugs in modern scientific perspective.

Key words: diabetes, dietary management, physical activity, antidiabetic plants.

Introduction

Diabetes mellitus is a global disease found in all nations of the world. There has been an explosive increase in the diabetics in the last two to three decades. Diabetes has become a major health concern worldwide with over 190 million suffering from disease now with a potential to have 324 million by 2025. Type 2 constitutes 90 % of the total diabetics in most countries with nearly 80% of the burden in developing countries (1). Particularly in India, there are currently 50 million people with diabetes, which is projected to increase by 90 million in the 2030. The fear of diabetic epidemic looms with statements in the press that read as "every fifth Indian and every fifth diabetic will be an Indian". The fact confirmed by reports from the World Health Organization (WHO) shows that India has the largest number of diabetic subjects in the world.

Diabetes mellitus is caused either by a lack of the hormone insulin (Type 1 diabetes) or the body's inability to use insulin (Type 2 diabetes). Type 2 diabetes is often triggered by obesity, stress and a sedentary life style. Since the drug therapy, whether using hypoglycemic agents or insulin, is costly, have side effects and keeps the diabetic individuals under constant medical supervision and the impression of being sick. These evidences have triggered the search for safe and effective alternatives. This paper reviews the alternative therapies adopted by people with main focus on history, use, scientific evidence, scope and future of herbal drugs in the management of diabetes.

Dietary management in diabetes

The diet therapy is the most natural, economical and more feasible. The proper intake of diet in diabetes improves the digestive power increases gastric secretions, gets easily digested in the body, and decreases the output of overall body fluids e.g. urine, sweat etc. Thus, the use of food items which are "madhu mehaghna" (antidote) is an important underlying principle of therapy for the diabetic patient. Aahar chiketsa (dietary management) is highly effective in early use of diseases and in case of non insulin dependent diabetes mellitus (NIDDM) which is directly related to diet. Diet high in simple carbohydrates and fat usually results in type-2 diabetes mellitus in the later stages of life. Also many patients with type-II diabetes mellitus can be controlled by diet alone without the use of hypoglycemic agents or insulin. Therefore, for proper management of diabetes individuals, the diet must be designed to supply adequate amount of nutrients namely carbohydrates, fats, proteins, vitamins and minerals (2).

High carbohydrate diet increases the sensitivity of peripheral tissues to both endogenous and exogenous insulin. Such diet improves glucose tolerance and lowers the level of serum insulin. In addition, the liberalization of carbohydrate might facilitate the reduction of saturated fatty acids and cholesterol in the diabetic diet (3). Diets that enhance glycemic controls are high in dietary fiber, low to moderate in dietary fat and moderate in high biological value proteins. Decreasing caloric intake for NIDDM patients results in weight reduction which is beneficial for diabetics (4). Very low energy diets produce greater improvement in glycemic control than more moderate diets in obese type-2 diabetes, even if weight losses are the same (5). Reduction in total and saturated fat and limited protein intake with replacement by complex carbohydrate and/or monosaturated fatty acids are the recommended diets for NIDDM. Such diets improve the metabolic control in diabetic individuals and reduce the risk of chronic complications (6). Decrease in energy and saturated fat intake help in NIDDM control. Diet that contains 60% carbohydrates and is rich in fiber improves blood sugar and lipid (7).

Thus, dietary manipulation is the first line of therapy for diabetic patients. Dietary strategies should aim to normalize the blood glucose and lipoprotein levels in order to reduce morbidity and mortality related to derangement of carbohydrates and lipoprotein metabolism in diabetes mellitus. To achieve these goals, quantity and quality of diets must be considered according to each individual and his clinical conditions.

Role of physical activity in diabetes

Regular physical activity is an essential component of management in persons with type-II diabetes. A careful assessment of an individual should be made by physician, while incorporating an exercise programme in the management. Exercise programme should be individualized according to individual capacity and disabilities. The person with diabetes must wear appropriate footwear.

The best form of exercise recommended to a diabetic is a stepwise increase of aerobic exercises. There are several benefits from a regular exercise schedule. These include improvement in insulin sensitivity, reduction of hypertension, reduction in weight, improvement in lipid profile (reduces serum triglycerides and increases HDL particularly HDL-2 cholesterol), improvement in cardiovascular function, increase in bone density, improvement in the sense of physical and mental well-being and improvement in the quality of life (8).

- Exercise must be done regularly.
- Brisk walk for 30-60 minutes or its equivalent physical activity.
- An exercise schedule should be one that the individual enjoys and which suits his/her needs.

The practice of yoga is traditional system, which is now gaining international acceptance of stress coping skills. Some of the aspects used in yoga are Asanas (involving postures), Pranayama (involving breath), Dhyana (involving meditation) and Bhavan (involving visualization which is also a part of dhyana). There are several studies done in our country, which have shown the role of yoga practices in the management of diabetes (9).

Herbal treatment of diabetes

In spite of the introduction of hypoglycemic agents, diabetes and its related complications continue to be a major medical problem since time immemorial. Patients with non-insulin dependent diabetes mellitus have been treated orally by folklore with a variety of plants extracts in the indigenous Indian system of medicine (Ayurveda). A mention was made on good number of plants for the cure of diabetes or madhumeha and some of them have been experimentally evaluated and the active principles were isolated in India (10-16). Such plants and remedies mentioned and used for the treatment of diabetes mellitus date back to the ancient authorities like Bhrigu, charaka, sushruta and vagbatta, the last three called vriddha-trayi of Ayurveda (17).

Medicinal plants play an important role in the management of diabetes mellitus especially in developing countries where resources are meager and where the coverage by health service is limited. The majority of the population when sick receive the treatment which is large by based on the use of medicinal plants or herbal drugs thus, the field of herbal medicines research has been gaining significant importance and the demand to use natural products in the treatment of diabetes in the increasing. So the pendulum is swinging back and the value of medicinal plants in the treatment is receiving attention.

A comprehensive approach was drawn by world health assembly. This was to include:

- A therapeutic classification of medicinal plants in different countries.
- Scientific criteria and methods for assessing the safety of medicinal plants products.
- International standards and specification for identity purity, strength and manufacturing practices.
- Methods for safe and effective use of medicinal plants products.
- Designation of research and training centre for the study of medicinal plants.

Plants based drugs can be used directly i.e. they may be collected, dried and used as therapeutic agents (crude drugs), or their constituents/active principles separated by various chemical processor which are employed as medicines. The phytochemicals identified from traditional medicinal plants are presenting an exciting opportunity for the development of new types of therapeutics (18). This has accelerated the global effort to harness and harvest those medicinal plants that bear a substantial amount of potential photochemical showing multiple beneficial effects in combating diabetes and diabetes-related complications.

Moreover, during the past few years some of the new bioactive drugs isolated from hypoglycemic plants showed antidiabetic activity with more efficacy than oral hypoglycemic agents used in clinical therapy. Many ethnobotanical surveys on medicinal plants used by the local population have been performed in different parts of the world including Morroco, Saudi Arabia, Taiwan, Trinidad and Tobago (19-24). A number of reviews have been published on plants screened for hypoglycemic activity in India (25-35). Two exhaustive reviews have been published based on global literature survey on 150 plants and 343 plants from different parts of the world (36, 19).

Global market, regulations and acceptance of herbal drugs

The global pharmaceutical market was worth US \$550 billion in 2004 (37) and is expected to exceed US \$1100 billion by the year 2010. The herbal industry shares about US \$100 billion with good growth potential. The World Bank report trade in medicinal plants, botanical drugs products and raw materials is growing at annual growth rate of about 15% (WHO). Within the European community botanical medicine represents an import share of the pharmaceutical market (38). In 2001 US \$ 17.8 Billion was spent in the united states on natural remedies (39). In India, the value of botanicals related trade is about US \$10 billion per annum with annual export of US \$1.1 billion (40) while china's annual herbal drug production is worth US \$48 billion with export of US \$3.1 billion (41). Presently, the United States is the largest market for Indian botanical products accounting for about 50% of the total exports. Out of this, only 40 per cent is value addition and 60 per cent is export of raw medicinal plant. Hence it is

PHCOG REV. An official Publication of Phcog.Net

proposed that in future we should decrease exporting raw medicinal plant and export only value-added products to realise higher earnings. Japan, Hong Kong, Korea and Singapore are the major importer of Traditional Chinese medicine taking 66% share of China's botanical drugs export. Globally, there have been concerted efforts to monitor quality and regulate the growing business of herbal drugs and traditional medicine. Health authorities and governments of various nations have taken an active interest in providing standardized botanical medication United States congress has fuelled rapid growth in the nutraceutical market with passage of the Dietary Supplement Health and Education Act in 1994. US Food and Drug Administration (FDA) has recently published the International Conference on Harmonization guidance Common Technical Document addressing concerns related to quality of medicines that also include herbals (42). The National Centre for Complementary and Alternative medicine has been inaugurated as the United States Federal Government's lead agency for scientific research in this area of medicine World Health Organization (WHO) is also been regarding traditional medicine and has been active in creating strategies, guidance and standards of botanical medicines (43, 44). Thus, the global scenario illustrates vividly both promise and challenges presented by the traditional medicines.

Safety and quality of herbal drugs

In India, about 9000 licensed units manufacture traditional medicines with or without proper standardization (45).

Most of the Indian manufactures do not follow WHO guidelines for quality control. Thus, adulteration of market samples remains a major problem in domestic and export market of Indian herbal products. Therefore, the government of India has promulgated GMP regulations for traditional systems of medicines to improve the quality and standards of Ayurvedic, Siddha and Unani drugs in Pharmacies. New rules regarding essential infrastructure manpower and quality control requirements came into force from 2000 and form part of the Drugs and cosmetic Act 1940 (46). Licensing of Ayurvedic medicine is also governed under Drug and Cosmetic Act 1940. Ayurvedic patent and proprietary medicine need to contain only the ingredients mentioned in the recommended books and specified in the Act. For any new herbal medicine, safety and efficacy data are mandatory. Depending on the nature of herbals and markets availability, different requirements exist for submission of clinical trial and safety data.

Conclusion

A comprehensive herbal drug therapeutic regimen thus offers time tested safe and effective support to conventional therapy in the management of diabetes. This is combination with adequate dietary management and physical activity would provide an integrated approach to the management of this deadly disease, particularly Type 2 diabetes. Additionally, due to unlimited potential of herbal drugs for innovative bioactive molecules, all efforts should be made to adopt a package of best practices encompassing conservation, cultivation, quality control, standardisation and research and development for medicinal plants and herbals.

Common Name	Botanical Name and Family	Parts Used	Active Constituents	Therapeutic Action	Ref
Bitter apple, Bitter cucumber,	Citrullus colocynthis Schard (Cucurbitaceae)	Rind of the plant	Glycosides and saponins	Decreases hyperglycemia.	47
Cabbage tree	Anthocleista voglii (Logoniaceae)	Root		Decreases blood glucose.	48
Gambol, Jamun, Black plum, berry, Jambul.	Eugenia jambolana Lam. / Syzigium cumini Skeels. (Myrtaceae)	Pulp/ seeds	Jamboline-a glucoside	Prevents pathological conversion of starch to glucose. Increases insulin secretion , inhibits insulinase activity from liver and kidney.	49 - 51
Banyan tree	Ficus bengalensis (Moraceae)	Bark infusion	Dimethoxy derivative of perlargonidin-3-o-a-L- rhamnoside, glucosides of leuco perlargonidin	Inhibits insulinase activity from liver and kidney and stimulates insulin secretion.	52 - 55
Bitter-kola, Malabar tamarind, false kola	<i>Garcinia kola</i> (Clusiaceae) Guttiferae	Seed	Kolaviron, a biflavonoid complex	Hypoglycaemic and hypolipidemic.	56
Mango	Mangifera indica (Anacardiaceae)	Extract of leaves		Hypoglycemic. Acts by reducing the intestinal absorption of glucose	57

Table: List of Plants with Antidiabetic activity

Holy basil	<i>Ocimum album</i> Roxb. (Lamiaceae)	Leaves	Volatile oil.	Decrease in fasting and postprandial glucose levels.	58
Barbados	<i>Aloe barbadensis</i> Mill. (Liliaceae)	Exudates of leaves	Bitter principles	Act by stimulating synthesis and/or release of insulin from β-cells of islets of langerhans.	59, 60
Devil's horsewh ip, Prickly chaff flower	Achyranthes aspera (amaranthaceae)	Whole plant		Hypoglyglycemic action by providing necessary elements like Ca, Zn, Mg, Mn, and Cu to the β-cells.	61
Banana	<i>Musa sapientum</i> Kuntze (Musaceae)	Fruits / flowers	Tannins.	Decreases hyperglycemic peak and area under the glucose tolerance curve, decreases blood glucose and glycosylated haemoglobin level and increases total haemoglobin.	62, 63
Olive leaf	Olea europea L. (Oleaceae)	Leaf	Oleuropeoside	Acts by potentiation of glucose induced insulin release and also by increased peripheral uptake of glucose	64, 65
	Bauhinia cheilandra	Leaves		Hypoglycaemic.	66
White wormwood	Artemisia herba- alba (Compositae)	Aerial Parts		Decrease in Hyperglycaemia, prevention of elevated glycosylated haemoglobin levels and a hypolyposis effect.	67
Pigeon pea	<i>Cajanus cajan</i> Millsp. (Fabaceae)	Seed		Decrease in serum glucose level.	68
Delek air tree, Ironwood tree Anjan, Kaya	Memecylon umbellatum (Melastomaceae)	Leaves		Improves glucose tolerance	69
Ashvagandha, dunal, winter cherry	Withania somnifera (Solanaceae)	Roots	Withanolides	Decrease in blood glucose level.	70
Scouring Rush	<i>Equisetum myriochaetum</i> (Equisetaceae)		3 kaempferol glucosides and one caffeoyl glucoside	Decreases glycaemia.	71
Saptrangi, Ponkoranti	<i>Salacia oblonga</i> Wall. (Hippcrateaceae)	Root bark	α- glucosidase inhibitor called kotalanol	Hypoglycemic. Inhibits α- glucosidase enzyme that digests starch in intestine.	72
Kirata	Swertia chiraita (Gentianaceae)	Bark	Xanthone named 1,8- dihydroxy-3,5-dimethoxy xanthone (swerchirin)	Decreases blood sugar. Acts by stimulating insulin release from the islets of langerhans.	73, 74

Javanica	<i>Swertia japonica</i> (Gentianaceae)	Bark	5- xanthones ,2- triterpenoids namely bellidifolin and thysanolactone respectively.	Hypoglycemic, decreases glucose concentration and blood triglyceride level, also stimulates glucose uptake.	75, 76
Spikenard	<i>Aralia cachemirica</i> Decne (Araliaceae)	Root		Hypoglycaemic	77
Nibima, kadze, and gangamau	Cryptolepis sanguinolenta (Asclepiadaceae)	Root	Cryptolepine- an indoloquinolone alkaloid	Decreases blood glucose concentration.	78
Honey grass, sweet plant, sugar leaf, Candyleaf,	<i>Stevia rebaudiana</i> Bertoni (Asteraceae)	Leaves	Stevioside, a glycoside	Antidiabetic. Increase insulin sensitivity in fructose rich chow-fed rats 67YU	79
Tulsi	<i>Ocimum sanctum</i> Linn. (Lamiaceae)	Leaves and leaf powder	Volatile oil.	Reduced glycemia.	80, 81
Vinca rosea	Cantharanthus roseus (apocynaceae)	Leaves		Marked lowering of glycaemia.	82
Neem, Indian liliac	(Azadirachta indica (Meliaceae)	Leaf, bark, flowers, seed.	Bitter principles-nimbin, nimbinin, nimbidin 47	The reduction in peripheral utilization of glucose and glycogenolytic effect due to epinephrine are blocked. Also blocks the inhibitory effect of serotonin on insulin secretion mediated by glucose.	83, 84
Folium mori, mulberry leaves	<i>Morus alba</i> L. (Moraceae)			Hypoglycemic. Acts by increase in glucose uptake.	85
	<i>Rhodiola</i> sachalinensis (Crassulaceae)	Roots of the plant		Decrease in glycemia, liver glycogen, total blood lipids.	86
Loquat	Eriobotrya japonica Lindl. (Rosaceae)		Sesquiterpene glycoside 3 and polyhydroxylated triterpenoids 5 and 6	Decreases the area under the glucose tolerance curve and inhibition of glycosuria also	87
Velvet bean or cowhage	Mucuna pruriens (<u>Fabaceae</u>)	Seeds	D-chiro-inositol and its two galacto-derivatives	Antidiabetic.	88
Arugula, roquette	<i>Eruka sativa</i> (Brassicaceae)	Seed		Ameliorated hyperglycaemia, improved lipid profile.	89
	Strobilanthes crispus (Acanthaceae)	Fermented and unfermented tea	Antioxidant and polyphenolic contents	Antihyperglycaemic and antilipidemic.	90
Dragon's blood, sacaca	<i>Croton cajucara</i> Benth	Bark	Trans- dehydrocrotonin (t- DCTN), a 19- nor clerodane	Hypoglycaemic.	91

	(Euphorbiaceae)		diterpene.		
Jack fruit	Atrocarpus heterophyllus Lam. (Moraceae)	Leaves		Decrease in fasting blood glucose level and improves glucose tolerance.	92
Feathy bomboo	<i>Bambusa vulgaris</i> (Gramineae)	Whole plant		Decreases fasting glycaemia and improves glucose tolerance.	92
Kokilakchha	Asteracantha longifolia Nees. (Acanthaceae)	Whole plant		Improve glucose tolerance.	93
Indian Fig	(Cactaceae)	Stems		Decreases glycaemia.	94
Nopal	<i>Opuntia</i> <i>steptacantha</i> (Cactaceae)	Leaves and Stems	Fiber and pectin	Decreases blood glucose level, serum glucose and insulin concentration, decrease the area under the glucose tolerance curve. Enhances insulin sensitivity, pectin component may alter hepatic cholesterol metabolism	95
White orchid tree	Bauhinia candicans (Leguminosae)	Dried leaves		Shows in-vitro stimulatory effect of glucose uptake in isolated gastric glands of normal and alloxan diabetic rabbits.	96
Llareta	<i>Azorella compacta</i> Phil (Umbelliferae)	Whole plant	Diterpenoids- mulinolic acid, azorellanol and mulin- 11,13-dien-20-oic acid	Acts on glucose utilization or production	97
Lantana, red sage, shrub verbena	Lantana camara (Verbenaceae)	Juice of leaves		Hypoglycemic.	98
Christ- thorn	Zizyphus spina- christi (Rhamnaceae)	Whole plant	A saponin glycoside – christinin A	Decreases the serum glucose level, liver phosphorylase and glucose -6- phosphatase activities, increases the serum pyruvate level and liver glycogen content. Also increases the glucose utilization and insulin and pancreatic cAMP levels.	99
Black tea	Camellia sinensis L. (Theaceae)	Leaves	Polyphenolic compounds.	Decreases blood glucose level.	100
Ginger, calamus, sweet ginger, ginger root, sonth(dried)	Zingiber officinalis (Zingiberaceae)	Fresh and dried root		Reduces body weight, glucose, insulin and lipid levels.	101
Agrimony	Agrimony eupatoria L. (Rosaceae)	Whole plant		Stimulated 2-deoxy glucose transport, glucose oxidation, incorporation of glucose into glycogen, and insulin secretion.	102

Tasmanian Bleu gum	<i>Eucalyptus globulus</i> Labill. (Myrtaceae)	Leaves		Acts due to its pancreatic and extrapancreatic effects.	103
	Hintonia standleyana	Stem bark	4-phenylcoumarins and cucurbitacin glycosides	Antihyperglycemic.	104
Custard apple, sugar apple, sharifa	Annona squamosa (Annonaceae)	Fruit pulp		Improvement in glucose tolerance, decreased urine sugar, urine protein and glycohaemoglobin in diabetic rabbits.	105
Desert Indian wheat, Blond psyllium, Ispaghul Plantain	Plantago ovata (Plantaginaceae)	Aqueous extract of husks	Mucilage.	Reduces hyperglycemia in type 1 and 2 diabetes mellitus. Inhibits intestinal glucose absorption and enhancement of mobility.	106
Karela, Bitter gourd, balsam pear	<i>Momordica</i> <i>charantia</i> (Cucurbitaceae)	Fruits , leaves and roots	Momordicine –a bitter glucoside,charantin, vicine, and polypeptide-p	Decreases blood glucose levels. Acts like insulin or via insulin secretion from pancreas, increases glucose uptake.	107, 108
Ivy gourd, Tendli	Coccinia indica (Cucurbitaceae)	Fresh juice of leaves, fruits, stem or roots	Glucoside alkaloids, glucokenin	Acts by inhibiting glucose-6- phosphatase-key gluconeogenic enzyme, decrease in phosphorylase activity.	109- 111
Chinese peony	<i>Paeonia lactiflora</i> Pall. (Ranunculaceae)	Dried roots	8-dibenzoyl paeoniflorin and paeoniflorin	Decrease in blood sugar. Acts by increase in glucose utilization by paeoniflorin.	112
Moghat	Glossostemon bruguieri Desf. (sterculiaceae)	Root		Decrease in blood glucose level.	113
Gamazumi	<i>Viburnum dilatatum</i> Thumb. (Caprifoliaceae)	Fruit	Cyanidin 3- sambubioside (C3S) and 5-caffeol quinic acid (5-CAQ)	Antihyperglycaemic. Inhibits alpha-glucosidase activity.	114
Gulnar farsi	Punica gratum L. (Punicaceae)	Flowers		Antidiabetic.	115
Sandspurry	<i>Spergularia purpurea</i> (Caryophyllaceae)	Whole plant		Decreases glycaemia.	116
Native Armenian plant	<i>Bryonia alba</i> (Cucurbitaceae)	Root	Trihydroxyoctadecadienoic acid	Hypoglycemic along with restoration of disordered lipid metabolism.	117
Leaf Mustard	<i>Brassica juncea</i> (Brassicaceae)			Acts by decreasing the activity of glycogenphosphorylase and	118

PHCOG REV. An official Publication of Phcog.Net

gluconeogenic enzymes.

Cinnamon	<i>Cinnamomi cassiae</i> (Lauraceae)	Bark		Improves insulin sensitivity or slows the absorption pf carbohydrates in small intestine	119
Chamomile, manzanilla, lawn chamomile	Chamaemelum nobile (Compositae)		3-hydroxy-3-methylglutaric acid(HMG) containing flavonoids, glucoside- chamaemeloside.	Hypoglycemic	120
Varnish tree, dhobi-nut, markingnut, oriental cashew, bhilarva	<i>Semecarpus</i> <i>anacardium</i> Linn. (Anacardiaceae)	Dried nuts		Lowered blood glucose level	121
Bhendu, Jonkaphal, Murdasing, Marorphali, East Indian screw tree, Murva	<i>Helicteres isora</i> (Sterculiaceae)	Bark	Triterpenoids, a-amyrin, β- amyrin, lupeol and its acetate, friedelin, β- sitosterol, epifriedelinol, bauerenol acetate, and taraxerone.	Decreases elevates blood glucose level. Increases hepatic hexokinase activity and significant decrease in hepatic glucose-6-phosphatase, serum acid phosphatase (ACP), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH).	122
Onion	Allium cepa L. (Liliaceae)	Bulb	S-methyl cysteine sulphoxide	Improves the metabolic status in diabetese because of its hypocholesterolemic and hypoglycemic effect.	123, 124
Common sage, Broadleaf Sage, Dalmatian Sage, Garden Sage, Kitchen Sage	Salvia officinalis (Labiatae)	Sage tea		Prevents type 2 diabetes mellitus by lowering the plasma glucose levels. Effects fasting glucose levels and has metformin like effect on rats hepatocytes.	125
Anamu	<i>Petiveria alleaceae</i> L. (Phytolacaceae)	Leaves and stem powder		Decrease in blood glucose concentration.	126
Creosote bush	<i>Larrea tridentate</i> (Zygophyllaceae)	Whole plant	Masoprocol (nordihydro guaiaretic acid, a lipoxygenase inhibitor)	Decreases plasma glucose concentration without any change in plasma insulin concentration, also improves oral glucose tolerance	127
Tree turmeric, Columbo Weed	Coscinium fenestratum (Menispermaceae)	Infusion / tincture	Berberines and saponins	Antidiabetic action.	128
Vijayasar	Pterocarpus marsupium (Leguminosea)	Heart wood	rich source of polyphenolic constituents namely marsupsin, pterosupin, pterostilbene and (-) epicatechin	Regeneration of pancreatic β- cells. Epicatechin reduces blood sugar and convert proinsulin to insulin β-cells.	129- 133
Shweta musli, Sufed musli.	Asparagus adscendens (Asparagaceae)	Root		Stimulates insulin secretion, insulin action and inhibits starch digestion	134

Little Club Moss	Selaginella tamariscina Beauv. (Lycopodiaceae)	Whole plant		Decreases blood glucose level and serum lipid peroxidase, increases concentration of serum insulin, it repairs the structure of pancreatic islet β- cells injured by alloxan.	135
	Embelia madagascariensis (Myrsinaceae)	Leaves		Decrease in blod glucose level and suppresses epinephrine induced hyperglycaemia.	136
Wood nettle	<i>Laportea ovalifolia</i> (Urticaceae)	Whole plant		Reduction in fasting serum glucose concentration, serum concentration of total cholesterol, triglycerides,LDL cholesterol.	137
East Indian lotus	<i>Nelumbo nucifera</i> Gaerth (Nymphaeaceae)	Finely pulverized rhizomes		Decreases glycaemia and increases glucose tolerance and also potentiatesthe action of exogenously injected insulin.	138, 139
Queen carpe- myrtle,Banaba/Queen flower	Lagerstroemia speciosa Pers. (Lythraceae)	Leaves	Two terpenoides- colosolic acid and maslinic acid	Facilitates glucose transport into cells and reduces amount of triglycerides	140, 141
Asiatic sweetleaf sapphire-berry	Symplocos paniculata (Thumb.) Miq. (Symplocaceae)	Leaves and stems	Three ursane-type triterpenes, ursolic acid (1), corosolic acid(2) and 2 alpha, 3 alpha, 19 alpha, 23- tetrahydroxyurs-12-en- 28-oic acid (3)	In type 2 diabetes and obesity. Inhibits protein tyrosine phosphatase 1B (PTP1B) 1 and 2 possessing only one or two hydroxyl groups can be potential PTP1B inhibitors.	142
	<i>Cleome droserifolia</i> Delile (Capparidaceae)	Whole plant		Acts by potentiation of peripheral and hepatic insulin sensitivity, and diminished intestinal glucose absorption.	143
Nyala tree/Mashatu	Xanthocercis zambesiaca (Leguminosae)	Leaves and roots	8 stucturally related nitrogen containing sugars, fagomine, 4-o-β-D- glucopyranosyl fagomine, 3-o-β-D-glucopyranosyl fagomine and 3- epifagomine.	Decreases blood glucose level.	144
Sapai, Faridbuti, Heart- Leaves Moonseed	<i>Tinospora crispa</i> (Menispermaceae)	Leaves		Hypoglycaemic. Acts by stimulating insulin release via modulation of Ca ⁺² concentrationin pancreatic β- cells.	145
	<i>Eriosema kraussianum</i> N.E.Br. (Fabaceae)	Roots	Two pyrano-isoflavone extractives	Vasodilatory and hypoglycaemic effects.	146
Sweet broomweed, licorice weed	Scoparia dulcis (Scrophulariaceae)	Whole plant		Significantly reduces blood glucose, serum and tissue	147

				cholesterol, triglycerides, free fatty acids, phospholipids, 3- hydroxy-3-methylglutaryl (HMG)-CoA reductase activity.	
Castor-leaved aralia	<i>Kalopanax pictus</i> Nakai (Araliaceae)	Stem bark	Kalopanax saponin A, hederagenin glycosides	Reduces hyperglycemia. Antidiabetic.	148
Marsh samphire, saltwort, crab grass	Salicornia herbacea L. (Chenopodiaceae)	Whole plant		Prevents onset of hyperglycaemia and hyperlipidemia induced by high fat diet in ICR mice. Stimulate cytokine production, nitric oxide release, and shows antioxidant effect.	149
Sand plantain	Plantago psylium L. (Plantaginaceae)	Husk.	Mucilage	Decrease the postprandial glucose, the area under the glucose tolerance curve and reduces the glycemic index of carbohydrate foods and help in diabetic control.	150
Toei- hom, screwpine	Pandanus odorus (Pandanaceae)	Roots	4- hydroxy benzoic acid	Decreases plasma glucose level and increases serum glucose level and liver glycogen Increases the peripheral glucose consumption	151- 153
Chaplu	Piper sarmentosum Roxb. (Piperaceae)	Whole plant		Decrease in plasma glucose levels	154
Corojo palm	Acrocomia mexicana (Leguminosea)	Roots	Tetrahydropyran	Hypoglycemic.	155
Fruit for Wolves,wolf- fruit,wolf-apple	<i>Solanum lycocarpum</i> St. Hill (Solanaceae)	Whole plant		Reduces glycaemia in alloxan induced diabetic rats, as antioxidant(reduced nitrate generation in diabetic animals) and restores haemoglobin and haematocrit to normal values in diabetic animals.	156
Brickellbush	Brickellia veronicaefolia A.Gray (Asteraceae)	Leaves	Flavone namely 5,7,3'- trihydroxy-3,6,4'- trimethoxy flavone.	Decreases blood glucose.	157, 158
	Gymnema montanum	Leaf	Ascorbic acid (Vitamin C) and alpha-tocopherol (Vitamin E) responsible for the observed property.	Significant reduction in blood glucose and an increase in plasma insulin, the decrease in lipid peroxides and increase in reduced glutathione (GSH).	159

	Allophylus cominia(L.) (Sapindaceae)	Leaves	Free amine groups, free phenolics, tannins, leucoantocianidines, saponins, triterpens, and steroids	Causes increase hepatic hexokinase activity and significant decrease in hepatic glucose-6-phosphatase, serum acid phosphatase (ACP), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH)	160
Jeera	Cuminum cyminum L.	Fruit		Decreases area under the glucose tolerance curve and	161, 162
Betel, Betel pepper, Betelvine, Betel vine Pan.	Piper betle (Piperaceae)	Leaf	Tannins	Antihyperglycemic. Influences glucose metabolism.	163
Bilwa, bael fruit, Bengal quince	Aegle marmelose (Rutaceae)	Leaf extract	Carbohydrates, Ascorbic acid.	Helps in restoration of blood glucose and body weight, decreases blood urea and serum cholesterol.	164, 165
Vairi, Pitika	Salacia reticulate Wright (Hippcrateaceae	Dried roots and stems	α- glucosidase inhibitor called kotalanol	Inhibits α - glucosidase enzyme that digests starch in intestine	166
Common fig	Ficus carica L. (Moraceae)	Leaves		Decreases postprandial glycaemia,hyperglycaemia, level of total cholesterol and reduction in total cholesterol / HDL cholesterol ratio.	167, 168
Gurmar, Small Indian ipecacuanha,Periploca of the woods	Gymnema sylvestre (Asclepiadaceae)	Leaves, stem	Gymnemoside a and beta- gymnemic acid V and a peptide Gurmarin.	Acts by enhancing endogenous insulin release, by regeneration /revitalization of residual β- cells. Also it neutralizes excess sugar	169- 171
Fenugreek , Methi	Trigonella foenum graecum (Leguminosea)	Leaf and seeds	Soluble dietary fibers (SDF), steroid saponins extracted from seed – fenugreekine, an alkaloid – trigonelline	Antihyperglycaemic. Acts by delaying gastric emptying, slows carbohydrate absorption and inhibit glucose transport.	172- 177
Garlic	Allium sativum L. (Liliaceae)	Bulb	A sulphur containing amino acid and a precursor of allicin and garlic oil –S- allyl cysteine sulphoxide, and ajoene.	Allicin restores blood levels of catalase and glutathione peroxidase. Ajoene decreases the activity of factors needed for lipid synthesis. It increases serum insulin and improves liver glycogen storage.	178, 179
Milk-Vetch Root	Astragalus membranaceus (Leguminosae)	Whole plant	Isoflavones-especially biochanin A	Regulates lipid metabolism.	180
	Pueraria thomsonii	Whole plant	Isoflavones-especially biochanin A	Antidiabetic and regulates lipid metabolism.	180
Mature tea tree,avaram	Cassia auriculata	Seed, flower	Tannins	Antidiabetic action.	181

	(Fabaceae)	buds.			
Palash, bastard- teak , flame-of-the- forest	Butea monosperma (fabaceae)	Flower	Phytochemical substances	Antidiabetic.	181
Coconut fiber	<i>Cocos nucifera</i> (Arecaceae)		Neutral detergent fiber	Decreases glycaemia and serum insulin ,increases the faecal excretion of Cu,cr, mn, Mg, Zn, and Ca.	182
Bhui amla, Jaramla, Bhumiamalaki	Phyllanthus amarus (Euphorbiaceae)	Whole plant	Tannins, flvonoids	Decreases hyperglycemia.	183, 184
Bhui amla, Jaramla, Jangli amli	Phyllanthus fraternus (Euphorbiaceae)	Whole plant	Tannins, flvonoids	Decreases hyperglycemia.	185
Guduchi	<i>Tinospora</i> <i>cardifolia</i> (Menispermaceae)	Root extract	Bitter principles	Decrease in glycaemia and brain lipids. Enhances insulin secretion and improves glucose metabolism.	186, 187
Devil's root, touch-me- not	Acanthopanax senticosus (Araliaceae)	Leaves	Saponins - acanthopanaxosides A, B, C	Hypoglycemic.	188
Leaf beet ,Sugar beet	<i>Beta vulgaris</i> var. Cicla L. (Chenopodiaceae)		Betavulgarosides I,II,III.IV and oleanolic acid oligoglycosides	Inhibit the increase in non- enzymatic glycosylation of skin proteins and blood glucose.	189
Hairy beggarticks, cobbler's pegs, Spanish	Bidens pilosa (Asteraceae)	Aerial part	Polyacetylenic glucosides	Decreases elevated blood glucose level.	190
Milk thistle	Silybum marianum (Asteraceae)	Fruits, seeds and leaves	Silymarin which is composed of 3 main constituents -silybin, silychristine and silidianin	Antidiabetic.Lipoperoxidation and restoration of normal malondialdehyde concentration and has anti- oxidant action also.	191
Guava, <mark>apple guava</mark> Kuawa, Puawa,sand	<i>Psidium guajava</i> (Myrtaceae)	Leaves	Tannins.	Decrease the blood glucose level.	192
Spanish Moss	<i>Tillandsia usneoides</i> (Bromeliaceae)		3-hydroxy-3-methyl glutaric acid (HMG)	Hypoglycemic.	193
Asiatic ginseng	Panax ginseng (Araliaceae)	Roots	Ginseng polypeptides and polysaccharides, Dammarane saponins: Protopanaxatriols, including ginsenosides RG1, RG2, Rf, Re) and protopanaxadiols (ginsenosides Rc, Rd, Rb1,	Lowers blood glucose by decreasing the rate of carbohydrate absorption into the portal hepatic circulation and increasing glucose transport and uptake and modulation of insulin secretion.	194, 195

Rb2).

Common Horse- chestnut	Aesculus hippocastanum L. (Hippocastanaceae)	Seeds	Five triterpene oligologlycosides named escins-I a, I b, II a, IIb, and IIIa	Hypoglycemic.	196, 197
Tonburi,Summer cypress(Japanese fruit), burning bush	Kochia scoparia (Chenopodiaceae)	Whole plant	Momordin 1 _c and 2'-Ο-β- D-glucopyranoside with 3 saponins named scoparianosides A,B and C	Inhibit the increase in serum glucose, inhibit glucose and ethanol absorption.	198
Spanish sage	<i>Salvia lavandifolia</i> Vahl. (Lamiaceae)	Whole plant		Hypoglycemic. Acts by potentiation of insulin release induced by glucose, increased peripheral uptake of glucose, decreased intestinal absorption of glucose, hyperplasia of the pancreatic islets β-cells.	199

References

- R. Sicree, J. Shaw and P. Zimmet, Prevalence and projections. In: D. Gan ed. Diabetes Atlas, World Diabetes Foundation. 3rd ed. Brussels, Belgium: International Diabetes Federation; 16– 104 (2006).
- R.K. Acharya, B.N. Upadhyay and L.D. Dwiwedi. Dietary management in Prameha. *Ancient Sci Life*. **115**(3): 176 (1996).
- A. Jenkins and R.G. Josse. Effects of processing/preparation as the blood glucose response to potatoes in diabetic patients. *Diabetes (Suppl).* 34: 32A (1985).
- B.A. Wilson, D.R. Hadden, I.D. Merrett and J.A. Weaver. Dietary management of maturity on set diabetes. *Br Med J.* 7: 367 (1988).
- R.R. Wing. Use of very low calorie diets in the treatment of obese persons with non-insulin dependent diabetes mellitus. J Am Diet Assoc. 95: 569(1995).
- K. Griver and R.R. Henry. Nutrition management of obesity and diabetes. *Nutr Res.* 14: 465(1994).
- Fernandez, M.L. Soto, Gonzalez, A. Jimenez, L. Navarrete-Lopeg-Cozer, Lobon, J.A. Hernandez, Aguirri, M.A. Zamorano, Escobar and F. Junenez. *Diet and NIDDM current and historical perspective*. Reuista- Clin Espanola. **186**: 131 (1990).
- R. K. Cambell, Type-II Diabetes: Disease state management. Retail Pharmacy News, October: 15-18 (1997).
- S. Dhanukar and U. Thatte, *Ayurveda Revisited*, (Popular Prakashan, Bombay, 1989).
- R.N. Chopra, S.L. Nayar and I.C. Chopra, *Glossary of Indian* Medicinal Plants, (CSIR, New Delhi: 1956).
- F.M. Al-Awadi and K.A. Gumaa. Studies on the activities of individual plants of an antidiabetic plant mixture. *Acta Diabetologica Latina*. 24: 37(1987).
- M.D. Ivorra, M. Paya and A. Villar. A review of natural products and plants as potential antidiabetic drugs. J *Ethnopharmacol.* 27: 243 (1989).
- F.J. Alarcon-Aguilara, R. Roman-Ramos, S. Perez- Gutierrez, A. Aguilar- Contreras, C.C. Contreras-Webar and J.L. Flores-Saenz. Study of the anti- hyperglycemic effect of plants used as antidiabetics. *J Ethnopharmacol.* 61: 101 (1998).
- K. Ajit, B.K. Choudhary and N.G. Bandhopadhyay. Preliminary studies on the inorganic constituents of some indigenous hypoglycemic herbs on oral glucose tolerance test. J *Ethnopharmacol.* 64: 179-84 (1999).

- R.R. Chattopadhyay. A comparative evaluation of some blood glucose lowering agents of plant origin. *J Ethnopharmacol.* 67: 367 (1999).
- J.K. Grover, S. Yadav and V. Vats. Medicinal plants of India with antidiabetic potential. *J Ethnopharmacol.* 81: 81 (2002).
- 17. A.B. Vaidya and S.K. Pandya. The golden age of Indian Medicine. *Bombay Hospital J.* **3**; 95 (1971).
- Ashok K Tiwari and Madhusudana Rao. Diabetes mellitus and multiple therapeutic approaches of phytochemicals: present status and future prospects. *J. Current Science*. 83 (1): 30 (2002).
- Atta-ur-Rahman and Khurshid Zaman. Medicinal plants with hypoglycemic activity. *J Ethnopharmacol.* 26 (2): 1 (1989).
- C.C. Lin. Crude drugs used for the treatment of diabetes mellitus in Taiwan. *Am J Clin Med.* 20: 269 (1992).
- D. Mahabir and M.C. Gulliford. Use of medicinal plants for diabetes in Trinidad and Tobago. *Rev Panam Salud Publica*. 1: 174 (1997).
- A. Ziyyat, A. Legssyer and H. Mekhfi et al. Phytotherapy of hypertension and diabetes in oriental Morocco. J *Ethnopharmacol.* 58: 45 (1997).
- N.A. Al- Rowais. Herbal medicine in the treatment of diabetes mellitus. *Saudi Med J.* 23: 1327 (2002).
- M. Bnouham, H. Mekhfi, A. Legssyer and A. Ziyyat. Medicinal plants used in treatment of diabetes in Morocco. *Int J Diab Metab.* 10: 1 (2002).
- S.K. Mukerjee and S. Mukherjee. Therapeutic advances in diabetes mellitus through ages. J Rev Indian Med. 1: 9 (1966).
- R.R. Chaudhary and S.B. Vohora. Plants with possible hypoglycemic activity in advances in Research in Indian Medicine, K.N. Udupa, G.N. Chaturvedi and S.N. Tripathi eds. Banaras Hindu University, Varanasi (India); 57 (1970).
- 27. C.R. Karnick. Some aspects of crude Indian drugs plants used in Ayurvedic system of medicine (*Madhumeha*) (Diabetes). *Acta Phytother Amst.* **19**: 141 (1972).
- G.V. Satavati, M.K. Raina and M. Sharma, *Medicinal Plants of India*, Vol 1, (Indian Council of Medical Research, 1976).
- G.V. Satyavati, A.K. Gupta and N. Tandon. *Medicinal Plants of India*, Vol 2, (Indian Council of Medical Research, New Delhi, 1987).
- 30. G.V. Satyavati. Pharmacology of medicinal plants and other natural products in current research in Pharmacology in India

(1975-1982), P.K. Das and B.N. Dhawan eds. Indian National Science Academy, New Delhi; 119 (1984).

- S.K. Mukherjee. Indigenous drugs in diabetes mellitus. J Diabetic Asso India (Suppl). 21: 97 (1981).
- 32. K.C. Mehta. Indian herbal drugs in the treatment of diabetes. *Current Med Pract.* **26(10)**: 305 (1982).
- S. Nagarajan, H.C. Jain and G.S. Aulakh. Indigenous plants used in the control of Diabetes in 'Cultivation and Utilization of Medicinal Plants. C.K. Atal and B.M. Kapur eds. Regional Research Laboratory Jammu (India); 584 (1982).
- G.K. Patnaik and B.N. Dhawan. Pharmacological studies on Indian Medicinal plants in Current Research on Medicinal Plants in India. B.N. Dhawan eds. Indian National Academy, New Delhi; 45 (1986).
- P.K. Das, G. Dasgupta and A.K. Mishra. Clinical studies on Medicinal Plants of India in Current Research of Medicinal Plants in India. B.N. Dhawan eds. INSA, New Delhi; 72 (1986).
- S.S. Handa, A.S. Chawla and Maninder. Hypoglycemic plants-A review. *Fitotherapia*. 60 (3): 195 (1989).
- K. Maggon. Best selling human medicine 2002-2004. Drug Discov Today. 11: 739 (2005).
- G. Bodekar and F. Kronenberg. A public health agenda for complementary, alternative and traditional (indigenous) medicine. *Am J Public Health.* 92: 1582 (2002).
- 39. P.A. Smet. Herbal remedies. *New Engl J Med.* **347**: 2046 (2002).
- J. Singh, A.K. Singh and S.P.S. Khanuja. Medicinal plants: India's opportunities. *Pharma Bioworld*. 1: 59 (2003).
- 41. S.S. Handa. Indian efforts for quality control and standardization of herbal drugs/ products. Proceedings of the first joint workshop on quality control and standardization of traditional medicine. Indo-China experience; Jan 8-10 (2004).
- Guidance for industry, M4: The CTD–quality questions answers /local issues, United States Food, Drug Administration (2004).
- 43. Traditional Medicine Strategy 2002-2005. World Health Organization, Geneva. (2002).
- 44. World Health Organization. Legal status of traditional medicine, complementary/alternative medicine: *a worldwide review*. WHO Geneva. (2001).
- 45. D. Warude and B. Patwardhan. Botanicals: quality and regulatory issues. *J Sci Ind Res.* **64**: 83 (2005).
- D.C. Sharma. India raises standards for traditional drugs. Lancet. 356: 231 (2000).
- I.A. Abdel-Hassan, J.A. Abdel-Barry and S. Tariq Mohammeda. The hypoglycaemic and antihyperglycaemic effect of *Citrullus colocynthis* fruit aqueous extract in normal and alloxan diabetic rabbits. *J Ethnopharmacol.* **71**: 325 (2000).
- F.Y. Abuh, C. Wambebe, P.P. Rai and E.N. Sokamba. Hypoglycamic activity of *Anthocleista voglii* (Planch) aqueous extract in rodents. *Phytother Res.* 4: 20 (1990).
- S. Achrekar, G.S. Kaklij, M.S. Pote and S.M. Kelkar. Hypoglycaemic activity of *Eugenia jambolana* and *Ficus* bengalensis: Mechanism of action. *In Vivo.* 5: 143 (1991).
- K.R. Kohli. A study of 'kriyakala' of diabetes mellitus and its treatment with an indigenous drug – *Eugenia jambolina*, MD (Ay.). Thesis, IMS, BHU, Varanasi. 1983.
- P.S. Prince, V.P. Menon and L. Pari. Hypoglycaemic activity of Syzigium cumini seeds: effect on lipid peroxidation in alloxan diabetic rats. J Ethnopharmacol. 61: 1 (1998).
- S. Achrekar, G.S. Kaklij, M.S. Pote and S.M. Kelkar. Hypoglycaemic activity of *Eugenia jambolana* and *Ficus* bengalensis: Mechanism of action. In Vivo. 5: 143 (1991).

- S. Cherian and K.T. Augusti. Antidiabetic effects of glycoside of Leucopelaegonidin isolated from *Ficus bengalensis* Linn. *Indian J Exp Biol.* 31:26 (1993).
- S. Cherian, R.V. Kumar, K.T. Augusti and J.R. Kidwai. Antidiabetic effects of glycoside of pelargonidin isolated from the bark of *Ficus bengalensis* Linn. *Indian J Exp Biol.* 29: 380 (1992).
- B.S. Geetha, B.C. Mathew and K.T. Augusti. Hypoglycaemic effects of leucodelphinidin derivative isolated from *Ficus bengalensis* (Linn.). *Indian J Physiol Pharmacol.* 38: 220 (1994).
- O. A. Adaramoye and E. O. Adeyemi. Hypoglycaemic and hypolipidemic effects of fractions from kolaviron, a biflavonoid complex from *Garcinia Kola* in streptozotocin-induced diabetes mellitus rats. *J Pharm Pharmacol.* 58(1): 121 (2006).
- A. O. Aderibigebe and B. A. Emudianughe. Antihyperglycemic effect of *Mangifera indica* in rat. *Phytother Res.* 13: 504 (1999).
- P. Agrawal, V. Rai and R. B. Singh. Randomized placebocontrolled, single blind trial of holy basil leaves in patients with non-insulin dependent diabetes mellitus. *Int J Clin Pharmacol Ther.* 34: 406 (1996).
- M. A. Ajabnoor. Effect of aloes on blood glucose levels in normal and alloxan diabetic mice. *J Ethnopharmacol.* 28: 215 (1990).
- R. Roman-Ramos, J. L. Flores-Saenz and F. Alarcon-Aguilar. Antihyperglycaemic effect of some edible plants. J Ethnopharmacol. 48: 25 (1995).
- M. S. Akhtar and J. Iqbal. Evaluation of the hypoglycemic effect of *Achyrantes aspera* in normal and alloxan diabetic rabbits. *J Ethnopharmacol.* 1: 49 (1991).
- F. J. Alarcon-Aguilar, R. Roman-Ramos and S. Perez-Gutierrez. Study of the anti hyperglycemic effect of plants used as anti diabetics. *J Ethnopharmacol.* 61: 101 (1998).
- L. Pari and J. Umamaheswari. Antihyperglycaemic activity of *Musa sapientum* flowers: effect on lipid peroxidation in alloxan diabetic rats. *PhytotherRes.* 14: 136 (2000).
- H. F. Al-Azzawie and M. S. Alhamdani. Hypoglycaemic and antioxidant effect of oleuropein in alloxan-induced diabetic rabbits. *Life Sci.* 78(12): 1371 (2006).
- M. Gonzalez, A. Zarzuelo, M. J. Gamez, M. P. Utrilla, J. Jimenez and L. Osuna. Hypoglycaemic activity of olive leaf. *Planta Med* 58: 513 (1992).
- E. R. Almeda, M. C. Guedes, J. F. Albuquerque and H. Xavier. Hypoglycaemic effect of *Bauhinia cheilandra* in rats. *Fitoterapia*. 77(4): 276 (2006).
- L. A. Al-Shamaony, S. M. Al- Khazaji and H. A. Twaij. Hypoglycaemic effect of *Artimisia herba alba*. II. Effect of valuable extract on some blood parameters in diabetic animals. *J Ethnopharmacol.* 43: 167 (1994).
- T. Amalraj and S. Ignacimuthu. Evaluation of the hypoglycaemic effect of *Cajanus cajan* (seeds) in mice. *Ind J Exp Biol* 36: 1032 (1998).
- T. Amalraj T and S. Ignacimuth. Evaluation of the hypoglycaemic effect of *Memecylon umbellatum* in normal and alloxan diabetic mice. *J Ethnopharmacol* 62: 247 (1998).
- B. Andallu and B. Radhika. Hypoglycaemic, diuretic and hypocholesterolemic effect of winter cherry (*Withania* somnifera, Dunal) root. Indian J Exp Biol 38: 607 (2000).
- A. Andrade Cetto, H. Wiedenfeld, M. C. Revilla and I. A. Sergio. Hypoglycaemic effect of *Equisetum myriochaetum* aerial parts on streptozotocin diabetic rats. *J Ethnopharmacol* 72: 129 (2000).

- K.T. Augusti, P. Joseph and T.D. Babu. Biologically active principles isolated from *Salacia oblonga* wall. *Indian J Physiol Pharmacol.* 39: 415 (1995).
- M.B. Bajpai, R.K. Asthana and N.K.Sharma. Hypoglycaemic effect of Swerchirin from the hexane fraction *Swertia chirayita*. *Planta Med.* 57: 102 (1991).
- A.M. Saxena, M.B. Bajpai, P.S. Murthy and S.K. Mukherjee. Mechanism of blood sugar lowering by a Swerchirin containing hexane fraction (SWI) *Swertia chirayita*. *Indian J Exp Biol.* 31: 178 (1993).
- P. Basnet, S. Kadota and M. Shimizu. Bellidifolin stimulates glucose uptake in rat 1 fibroblasts and ameliorates hyperglycaemia in streotozotocin (STZ)-induced diabetic rats. *Planta Med.* 61: 402 (1995).
- P. Basnet, S. Kadota, M. Shimizu and T. Namba. Bellidifolin: a potent hypoglycaemic agent in streptozotocin (STZ)-induced diabetic rats from *Swertia japonica*. *Planta Med* . **60**: 507 (1994).
- Z.A. Bhat, S.H. Ansari, H.M. Mukhtar, T. Naved, J.I. Siddiqui and N.A. Khan. Effect of *Aralia cachemirica* Decne root extracts on blood glucose level in normal and glucose loaded rats. *Pharmazie*. 60(9): 712 (2005).
- D.E. Bierer, L.G. Dubenko and P. Zhang. Antihyperglycaemic activities of Cryptolepine analogues: an ethnobotanical structure isolated from *Crptolepis sanguinolenta*. *J Med Chem.* **41**: 2754 (1998).
- J.C. Chang, M.C. Wu, I.M. Liu and J.T. Cheng. Increase of insulin sensitivity by stevioside in fructose- rich chow-fed rats. *Horm Metab Res.* 37(10): 610 (2005).
- R.R. Chattopadhyay, S.K. Sarkar, S. Ganguly, R.N. Banerjee and T.K. Basu. Hypoglycemic and anti hyperglycemic effect of leaves of *Vinca rosea* Linn. *Indian J Physiol Pharmacol.* 35: 145 (1991).
- V. Rai, U. Iyer and U.V. Mani. Effect of Tulasi (*Ocimum sanctum*) leaf powder supplementation on blood sugar levels, serum lipids and tiisue lipids in diabetic rats. *Plant Foods Hum Nutr.* 50: 9 (1997).
- B.D. Benjamin, S.M. Kelkar and M.S. Pote. *Cantharanthus roseus* cell cultures: Growth, alkaloid synthesis and antidiabetic activity. *Phytother Res.* 8: 185 (1994).
- R.R. Chattopadhyay. Possible mechanism of antihyperglycaemic effect of *Azadirachta indica* leaf extract, part IV. *Gen Pharmacol.* 27: 431 (1996).
- R.R. Chattopadhyay. Possible mechanism of antihyperglycaemic effect of *Azadirachta indica* leaf extract, part V. *Gen Pharmacol.* 67: 373 (1999).
- F. Chen, N. Nakashima, I. Kimura and M. Kimura. Hypoglycaemic activity and mechanisms of extracts from mulberry leaves (*Folium mori*) and cortex radicis in streptozotocin–induced diabetic mice. *Yakugaku Zasshi*. 115: 476 (1995).
- X.J. Cheng, L. Di and Y. Wu. Studies on the hypoglycaemic effect of *Rhodiola sachalinensis* A. Bor. Polysaccharides. *Chung Kuo Chung Yao Tsa Chih.* 18: 557-9, (1993).
- N. De Tommasi, F. De Simone and G. Cirino. Hypoglycaemic effects of sesquiterpene glycosides and polyhydroxylated triterpenoids of *Eriobotrya japonica*. *Planta Med.* 57: 42 (1991).
- D. Donati, L.R. Lampariello, R. Pagani, R. Guerranti, G. Cinci and E.Marinello. Antidiabetic oligocyclitols in seeds of *Mucuna Pruriens. Phytother Res.* **19**(12):1057 (2005).

- M.A. El-Missiry and A.M. El-Gindy. Amelioration of alloxan induced diabetes mellitus and oxidative stress in rats by oil of *Eruca sativa* seeds. *Ann Nutr Metab.* 44: 97 (2000).
- A.B. Fadzelly, R. Asmah and O. Fauziah. Effects of *Strobilanthea crispus* tea aqueous extracts on glucose and lipid profile in normal and streptozotocin- induced hyperglycaemic rats. *Plant Foods Hum Nutr.* 61(1): 7 (2006).
- R.A. Farias, V.S. Rao and G.S. Viana. Hypoglycaemic effect of trans-dehydrocrotocin, a nor-clerodane diterpine from *Croton cajucara*. *Planta Med.* 63: 558 (1997).
- M.R. Fernando, M.I. Tabrew and E.H. Karunanayaka. Hypoglycaemic activity of some medicinal plants in Sri-Lanka. *Gen Pharmacol.* 21: 779 (1990).
- M.R. Fernando, N. Wickramasinghe, M.I. Thabrew, P.L. Ariyananda and E.H. Karunanayake. Effect of *Artocarpus heterophyllus* and *Asteracanthus longifolia* on glucose tolerance in normal human subjects and in maturity onset diabetic patients. *J Ethnopharmacol.* 31: 277 (1991).
- A.C. Frati, E. Jiminez and C. Raoul Ariza. Hypoglycaemic effect of *Opuntia ficus indica* in non-insulin dependent Diabetes Mellitus patients. *Phytother Res.* 4: 195 (1990).
- A.C. Frati, B.E. Gordillo and P. Altamirano. Influence of nopal intake upon fasting glycaemia in type II diabetes and healthy subjects. *Arch Invest Med (Mex)*. 22: 51 (1991).
- O. Fuentes and J. Alarcon. Butanol extract of dried leaves of Bauhinia candicans. Fitoterapia. 77(4): 271-275 (2006).
- N.L. Fuentes, H. Sagua, G. Morales, J. Borquez, A. San Martin, J. Soto and L.A. Loyola. Experimental antihyperglycaemic effect of diterpenoids of llareta *Azorella compacta* (Umbelliferae) Phil in rats. *Phytother Res.* **19(8)**: 713 (2005).
- S.K. Garg, M.A. Shah and K.M. Garg. Antilymphocytic and immunosuppressive effects of *Lantana camara* leaves in rats. *Indian J Exp Biol.* 35: 1315 (1997).
- K.W. Glombitza, G.H. Mahran and Y.W. Mirhom. Hypoglycaemic and antihyperglycaemic effects of *Zizyphus* spina-christi in rats. *Planta Med.* **60**: 244 (1994).
- A. Gomes, J.R. Vedasiromoni and M. Das. Antihyperglycaemic effect of black tea (*Camelia sinensis*) in rats. *J Ethnopharmacol.* 45: 223 (1995).
- R.K. Goyal and S.V. Kadnur. Beneficial effects of *Zingiber* officinale on goldthioglucose induced obesity. *Fitoterapia*. 77(3): 160 (2006).
- 102. A. M. Gray and P. R. Flatt. Actions of the traditional antidiabetic plant, *Agrimony eupatoria*: effects on hyperglycemia, cellular glucose metabolism and insulin secretion. *Br J Nutr.* **80(1):** 109 (1998).
- 103. A. M. Gray and P. R. Flatt. Antihyperglycemic actions of *Eucalyptus globulus* are associated pancreatic and extrapancreatic effects in mice. J Nutr. 128(12): 2319 (1988).
- 104. J. A. Guerrero-Analco, J. A. Hersech-Martinez, J. Pedraza-Chaverri, A. Navarrete and R. Mata. Antihyperglycaemic effects of constituents from *Hintonia standleyana* in streptozotocin-induced diabetic rats. *Planta Med.* **71(12)**: 1099 (2005).
- 105. R. K. Gupta, A. N. Kesari, G. Watal, P. S. Murthy, R. Chandra and V. Tandon. Nutritional and hypoglycaemic effect of fruit pulp of *Annona squamosa* in normal and alloxan-induced diabetic rabbits. *Ann Nutr Metab.* **49(6):** 407 (2005).
- 106. J. M. Hannan, L. Ali, J. Khaleque, M. Akhter, P. R. Flatt and Abdel-Wahab. Aqueous extracts of husks of *Plantago ovata* reduce hyperglycaemia in type1 and type 2 diabetes by inhibition of intestinal glucose absorption. *Br J Nutr.* **96(1)**: 131 (2006).

- 107. H. Higashino, A. Suzuki and K. Tanaka Pootakham. Hypoglycaemic effect of Siamese *Momordica charantia* and *Phyllanthus urinaria* extracts in streptozotocin- induced diabetic rats. *Nippon Yakurigaku Zasshi*. **100:** 515 (1992).
- M. B. Krawinkel and G. B. Keding. Bitter gourd (*Momordica charantia*): A dietary approach to hyperglycaemia. *Nutr Rev.* 64 (7): 331 (2006).
- 109. M. Z. Hossain, B. A. Shibib and R. Rahman. Hypoglycaemic effects of *Coccinia indica*: inhibition of key gluconeogenic enzyme, glucose-6-phosphatase. *Indian J Exp Biol.* **30**: 418 (1992).
- 110. S. M. Kamble, G. S. Jyotishi, P. L. Kamalakar and S. M. Vaidya. Efficacy of *Coccinia indica*-W and A in diabetes mellitus. *J Res Ayurv and Sidha*. **17(1-2)**: 77 (1996).
- 111. G. P. Kumar, S. Sudheesh, N. R. Vijayalakshmi. Hypoglycaemic effect of *Coccinia indica*: Mechanism of action. *Planta Med.* 59: 330 (1993).
- 112. F. L. Hsu, C. W. Lai and J. T. Cheng. Antihyperglycaemic effects of paeoniflorin and 8-dibenzoylpaeniflorin, glucosides from the root of *Paeonia lactiflora*. *Planta med.* **63**: 323 (1997).
- 113. N. Ibrahim, W. El-Eraky, S. El-Gengaihi and A. S. Shalaby. Chemical and biological evaluation of proteins and mucilage from roots and seeds of *Glossostemon burguieri* Desf. (Moghat). *Plant Foods Hum Nutr.* **50**: 55 (1997).
- 114. K. Iwai, M. Y. Kim, A. Onodera and H. Matsue. Alphaglucosidase inhibitory and antihyperglycaemic effects of polyphenols in the fruit of *Viburnum dilatatum* Thunb. *J Agri Food Chem.* 54(13): 4588 (2006).
- 115. M. A. Jafri, M. Aslam, K. Javed and S. Singh. Effect of *Punica granatum* Linn. (Flowers) on blood glucose level in normal and alloxan induced diabetic rats. *J Ethnopharmacol.* **70**: 309 (2000).
- H. Jouad, M. Eddouks, M. A. Lacaille-Dubois and B. Lyoussi. Hypoglycaemic effect of *Spergularia purpurea* in normal and streptozotocin induced diabetic rats. *J Ethnopharmacol.* 71: 169 (2000).
- 117. K. G. Karagenzyan, G. S. Vartanyan and M. I. Agadjanov. Restoration of the disordered glucose fatty acid cycle in alloxandiabetic rats by trihydroxyoctadecadienoic acids from *Bryonia alba*, a native Armenian medicinal plant. *Planta Med.* 64: 417 (1998).
- 118. B. A. Khan, A. Abraham and S. Leelamna. Hypoglycaemic action of *Murraya koenigii* (curry leaf) and *Brassica juncea* (mustard): Mechanism of action. *Ind J Biochem Biophys.* 32: 106 (1995).
- 119. S. H. Kim, S. H. Hyun, S. Y. Choung. Antidiabetic effect of Cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol. 104(1-2): 119 (2006).
- 120. G. M. Konig, A. D. Wright and W. J. Keller. Hypoglycaemic activity of HMG- containing flavonoid glucoside, chamaenmeloside from *Chamaemelum nobile*. *Planta Med* 64: 612 (1998).
- 121. R. Kothai, B. Arul, K. S. Kumar and A. J. Christina. Hypoglycaemic and antihyperglycaemic effects of *Semecarpus* anacardium Linn in normal and alloxan-induced diabetic rats. J Herb Pharmacother. 5(2): 49 (2005).
- 122. G. Kumar, A. G. Murugesan and M. Rajasekara Pandian. Effect of *Helicteres isora* bark extract on blood glucose and hepatic enzymes in experimental diabetes. *Pharmazie*. 61(4): 353 (2006).
- 123. K. Kumari, B. C. Mathew and K. T. Augusti. Antidiabetic and hypolipidemic effects of S-methyl cysteine sulphoxide isolated

from Allium cepa Linn. Indian J Biochem Biophys. 32: 49 (1995).

- 124. P. S. Babu and K. Srinivasan. Influence of dietary capsaicin and onion on the metabolic abnormalities associated with streptozotocin induced diabetes mellitus. *Mol Cell Biochem.* 175: 49 (1997).
- 125. C. F. Lima, Azevedo MF, R. Araujo, M. Fernandes-Ferreira and C. Pereira-Wilson. Metformin-like effect of *Salvia officinalis* (common sage): is it useful in diabetes prevention. *Br J Nutr.* **96(2)**: 326 (2006).
- 126. R. I. Lores and M. Cires Pujol. Study of the hypoglycaemic effect of *Petiveria alleaceae* L (anamu). *Med Intern.* 28: 347 (1990).
- 127. J. Luo, J. Chuang and J. Cheung. Masoprocol (nordihydroguaiaretic acid): A new antihyperglycaemic agent isolated from the creosote bush (*Larrea tridentate*). Eur J Pharmacol. 346: 77 (1998).
- 128. B. Mahapatra. Hypoglycaemic activity of *Coscinium fenestratus* (gaertn) colber. *J Res Ayurv and Sidha*. **18(3-4):** 89 (1997).
- 129. M. Manickam, M. Ramanathan and M. A. Jahromi. Antihyperglycaemic activity of phenolics from *Pterocarpus marsupium. J Nat Prod.* 609 (1997).
- 130. F. Ahmad. Effect of (-) epicatechin on cAMP content, insulin release and conversion of proinsulin to insulin in immature and mature rat islets in vitro. *Ind J Exp Biol.* **29:** 516 (1991).
- B. K. Chakravarthy. Pancreatic beta-cell regeneration-a noval antidiabetic mechanism of *Pterocarpus marsupium*, Roxb. *Ind J Pharmacol.* **12(2)**: 123 (1980).
- 132. K. R. Kohli. Clinical evaluation of a few herbal extracts in prameha vis-avis diabetes mellitus. Ph. D. Thesis, University of Mumbai, Mumbai, India. 1994.
- 133. D. S. Shah. A preliminary study of hypoglycaemic action of heartwood of *Pterocarpus marsupium* Roxb. *Ind J Med Res.* 55(2): 166 (1967).
- 134. J. N. Methews, P. R. Flatt and Y. H. Abdel-Wahab. Asparagus adscendens (Shweta musali) stimulates insulin secretion, insulin action and inhibits starch digestion. Br J Nutr. 95(3): 576 (2006).
- 135. N. Miao, H. Tao, C. Tong, H. Xuan and G. Zhang. The Selaginella tamariscina (Beauv.) spring complex on the treatment of experimental diabetes and its effects on blood rheology. Chung Kuo Chung Yao Tsa Chih. 21: 493 (1996).
- 136. T. Miura and A. Kato. Hypoglycaemic action of *Embelia madagascariensis* in normal and diabetic mice. *Am J Clin Med.* 25: 169 (1997).
- 137. C.E. Momo, J.E. Oben, D. Tazoo and E. Dongo. Antidiabetic and hypolipidemic effects of a methanol/ methylene-chloride extract of *Laportea ovalifolia* (Urticaceae) measured in rats with alloxan-induced diabetes. *Ann Trop Med Parasitol*. **100(1)**: 69 (2006).
- 138. P.K. Mukherjee, M. Pal, K. Saha and B.P. Saha. Hypoglycaemic activity of *Nelumbo nucifera* Gaertn (Fam nymphaeaceae) rhizome (Methanolic extract) in streptozotocininduced rats. *Phytother Res.* 58: 522 (1995).
- 139. P.K. Mukherjee, K. Saha, M. Pal and B. P. Saha. Hypoglycaemic activity of *Nelumbo nucifera* rhizome extract on blood sugar level in rats. *J Ethnopharmacol.* 58: 207 (1997).
- 140. C. Murakami, K. Myoga and R. Kasai. Screening of plant constituents for effect on glucose transport activity in Ehrlich ascites tumour cells. *Chem Pharm Bull (Tokyo).* **41**: 2129 (1993).

- 141. T. Kakuda, I. Sakane and T.Takihara. Hypoglycaemic effect of extracts from *Lagerstroemia speciosa* L. leaves in genetically KK-AY mice. *Biosci Biotechnol Biochem.* **60**: 204 (1996).
- 142. M. Na, S. Yang, L. He, H. Oh, B.S. Kim, W.K. Oh, B.Y. Kim and J.S. Ahn. Inhibition of protein tyrosine phosphatase 1B by ursane-type triterpenes isolated from *Symplocos paniculata*. *Planta Med.* **72(3)**: 261 (2006).
- 143. W.G. Nicola, K.M. Ibrahim and T.H. Mikhail. Role of the hypoglycaemic plant extract *Cleome droserifolia* in improving glucose and lipid metabolism and its relation to insulin resistance in fatty liver. *Bull Chim Farm.* **135**: 507 (1996).
- 144. H. Nojima, I. Kimura and F.J. Chen. Antihyperglycaemic effects of N- containing sugars from *Xanthocecis zambesiaca*, *Morus bombycis*, *Aglaenema treubii* and *Castanospermum autrale* in streptozotocin diabetic mice. J Nat Prod. 61: 397 (1998).
- 145. H. Noor and S.J. Ashcrof. Pharmacological characterization of the antihyperglycaemic properties of *Tinospora crispa* extracts. *J Ethnopharmacol.* 62: 7 (1998).
- 146. J. A. Ojewole, S. E Drewes and F. Khan. Vasodilatory and hypoglycaemic effects of two pyrano-isoflavone extractives from *Eriosema kraussianum* N.E.Br.(Fabaceae) rootstock in experimental rat models. *Phytochemistry*. 67(6): 610 (2006).
- 147. L. Pari, and M. Latha. Antihyperglycaemic effect of *Scoparia dulcis* (sweet broomweed) in streptozotocin diabetic rats. *J Med Food*. **9(1):** 102 (2006).
- 148. H. J. Park, D. H. Kim and J. W. Choi. A potent antidiabetic agent from *Kalopanax pictus*. Arch Pharm Res. 21: 24 (1998).
- 149. S. H. Park, S. K. Ko, J. G. Choi and S. H. Chung. Salicornia herbacea prevents high fat diet-induced hyperglycaemia and hyperlipidemia in ICR mice. Arch Pharm Res. 29(3): 256 (2006).
- J. G. Pastors, P. W. Blaisdell and T. K. Balm. Psyllium fiber reduces rise in postprandial glucose and insulin concentrations in patients with non-insulin dependent diabetes. *Am J Clin Nutr.* 53: 1431 (1991).
- 151. P. Pengvicha, R. Temsiririrkkul and J. K. Prassain. 4hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of *Pandanus odorus* root. *J Ethnopharmacol.* 62: 79 (1998).
- 152. P. Pengvicha, S. S. Thirawarapan and H. Watanabe. Hypoglycaemic effect of water extract of the root of *Pandanus* odorus RIDL. Biol Pharm Bull. **118:** 24 (1996).
- 153. P. Pengvicha, S. S. Thirawarapan, H. Watanabe. Possible mechanism of hypoglycaemic effect of 4- hydroxybenzoic acid, a constituent of *Pandanus odorus* root. *Jap J Pharmacol.* 78: 395 (1998).
- 154. P. Pengvicha, S. S. Thirawarapan and R. Temsiririrkkul. Hypoglycaemic effect of the water extract of *Piper* sarmentosum in rats. J Ethnopharmacol. 60: 27 (1998).
- 155. S. Perez, R. M. Perez and C. Perez. Coyolosa, a new hypoglycaemic from *Acrocomia mexicana*. *Pharm Acta Helv* 72: 105 (1997).
- 156. A. C. Perez, V. Franca, V. M. Daldegan and I. D. Duarte. Effcet of *Solanum lycocarpum* St. Hill on various haematological parameters in diabetic rats. *J Ethnopharmacol.* **106(3)**: 442 (2006).
- 157. R. M. Perez-Gutierrez, C. Perez-Gonzalez, M. A. Zavalasanchez and S. Perez- Gutierrez. Hypoglycemic activity of *Bouvardia terniflora, Brickellia veronicaefolia, and Parmentiera edulis. Salud Publica Mex.* **40**: 354 (1998).
- 158. R. M. Perez, H. Cervantes and M. A. Zavala. Isolation and hypoglycemic activity of

5,7,3'-trihydroxy-3,6,4'-trimethoxy flavone from *Brickellia* veronicaefolia. Phytomedicine. **7:** 25 (2000).

- 159. K. M. Ramkumar, M. Latha, N. Ashokkumar, L. Pari and R. Ananthan. Modulation of impaired cholinesterase activity in experimental diabetes: effect of *Gymnema montanum* leaf extract. *J Basic Clin Physiol Pharmacol.* **16(1)**: 17 (2005).
- 160. T. V. Rodriguez, J. V. Gonzales, L. M. Sanchez, M. N. Perez and E. M. Faz. Detection and determination of chemical groups in an extract of *Allophylus cominia* (L.). *J Herb Pharmacother*. 5(4): 31 (2005).
- 161. R. Roman-Ramos, J. L. Flores-Saenz and F. Alarcon-Aguilar. Antihyperglycaemic effect of some edible plants. J Ethnopharmacol. 48: 25 (1995).
- 162. A. N. Kalia, V. Shankar and H. Lal. Hypoglycemic activity of *Cuminum cyminum* L. fruits in albino rats. *Mol Biol Plants*. 10: 131 (2004).
- 163. P. Santhakumari, A. Prakasam, K. V. Pugalendi. Antihyperglycaemic activity of *Piper betle* leaf on streptozotocin-induced diabetic rats. *J Med Food.* 9(1): 108 (2006).
- 164. P. V. Seema, B. Sudha and P. S. Padayatti. Kinetic studies of purified malate deshydrogenase liver of streptozotocin-diabetic rats and the effect of leaf extract of *Aegle marmelose* (L) Correa ex Roxb. *Ind J Exp Biol.* **34**: 600 (1996).
- 165. P. T. Ponnachan, C. S. Paulose, K. R. Panikkar. Effect of leaf extract of *Aegle marmelose* in diabetic rats. *Ind J Exp Biol.* 31: 345 (1993).
- 166. M. Yoshikawa, T. Murakami, K. Yashiro and H. Matsuda. Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine *Salacia reticulata*. *Chem Pharm Bull.* **46:** 1339 (1995).
- 167. A. Serraclara, F. Hawkins and C. Perez. Hypoglycaemic action of an oral fig-leaf decoction in type-I diabetic patients. *Diab Res Clin Pract.* 39: 19 (1998).
- 168. J. R. Canal, M. D. Tores, A. Romero and C. Perez. A chloroform extract obtained from a decoction of *Ficus carica* leaves improves the cholesterolaemia status of rats with streptozotocin-induced diabetes. *Acta Physiol Hung.* 87: 71 (2000).
- 169. E. R. Shanmugasundaram, G. Rajeshwari, K. Baskaran, B. R. Rajesh, K. Radha Shanmugasundaram and B. Kizar Ahmath. Use of *Gymnema sylvester* leaf exract in the control of blood glucose in insulin-dependent diabetes mellitus. *J Ethnopharmacol.* **30**: 281 (1990).
- 170. C. Murakami, T. Murakami and M. Kadoya. New hypoglycaemic constituents in "gymnemic acid" from *Gymnema sylvestre. Chem Pharm Bull (Tokyo).* 44: 469 (1996).
- 171. R. R. Chattopadhyay. Possible mechanism of antihyperglycaemic effect of *Gymnema sylvestre* leaf extractpart I. *Gen Pharmacol.* **31:** 495 (1998).
- 172. L. Ali, A. K. Azad Khan and Z. Hassan. Characterization of the hypoglycaemic effects of *Trigonella foenum graecum* seed. *Planta Med.* 61: 358 (1995).
- 173. P. Khosla, D. D. Gupta, R. K. Nagpal. Effect of *Trigonella foenum graecum* (Fenugreek) on blood glucose in normal and diabetic rats. *Ind J Physiol Pharmacol.* **39:** 173 (1995).
- 174. Z. Madar. Fenugreek (*Trigonella foenum-graceum*) as a means of reducing postprandial glucose levels in diabetic rats. *Nutr Rep Int.* **29:**1267 (1984).
- 175. P. R. Petit, Y. D. Sauvaire and D. M. Buys. Steroid saponins from fenugreek seeds: extraction, purification, and

pharmacological investigation on feeding behavior and plasma cholesterol. *Steroids*. **60**: 674 (1995).

- 176. T. C. Raghuram, R. D. Sharma, B. K. Sahay. Effect of fenugreek seeds on intravenous glucose disposition in noninsulin dependent diabetic patients. *Phytother Res.* 8: 83 (1994).
- 177. R. D. Sharma, T. C. Raghuran and N. S. Raos. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. *Eur J Clin Nutr.* 44: 301 (1990).
- 178. C. G. Sheela, K. T. Augusti. Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic *Allium sativum* Linn. *Ind J Exp Biol.* **30**: 523 (1992).
- 179. K. T. Augusti and C. G. Sheela. Antiperoxide effect of S-allyl cysteine sulphoxide, an insulin secretagogue, in diabetic rats. *Experientia.* 52: 115 (1996).
- 180. P. Shen, M. H. Liu, T. Y. Nig, Y. H. Chan and E. L. Yong. Differential effects of isoflavones, from Astagalus membranaceus and Pueraria thomsonii, on the activation of PPAR alpha, PPAR gamma and adipocyte differentiation in vitro. J Nutr. 136(4): 899 (2006).
- Shiva. First aid remedies: their sources and methods of uses. XVIth series (A) Anaemia (B) Diabetes/ Glycosuria) MFP News. 8(1): 8-9 (1998).
- 182. J. A. Sindurani and T. Rajamohan. Effects of different levels of coconut fiber on blood glucose, serum insulin and minerals in rats. *Ind J Physiol Pharmacol.* 44: 97 (2000).
- N. Srividya and S. Periwal. Diuretic, hypotensive and hypoglycaemic effect of *Phyllanthus amarus*. *Ind J Exp Biol.* 33: 861 (1995).
- 184. Munish Garg, V. J. Dhar, A. N. Kalia. Antidiabetic and Antioxidant potential of *Phyllanthus fraternus* in alloxaninduced diabetic animals. *Pheog Mag.* 14(4): 138-143 (2008).
- 185. P. Stanley Meinzen and V. P. Menon. Hypoglycaemic and other related actions of *Tinospora cordifolia* roots in alloxan-induced diabetic rats. *J Ethnopharmacol.* **70:** 9 (2000).
- S. S. Gupta. Antidiabetic effects of *Tinospora cordifolia*. Ind J Med Res. 55(7): 733 (1967).
- 187. D. Y. Sui, Z. Z. Lu, S. H. Li and Y Cai. Hypoglycaemic effect of saponin isolated from leaves of *Acanthopanax senticosus* (Rupr. Et Maxin.) Harms. *Chung Kuo Chung Yao Tsa Chih.* 19: 683-685 (1994).
- 188. T. Tunali, A. Yarat and R.Yanardag. The effect of Chard (*Beta vulgaris* L. ver. Cicla) on the skin of streptozotocin induced diabetic rats. *Pharmazie*. 53: 638 (1998).
- 189. R. P. Ubillas, C. D. Mendez and S. D. Jolad. Antihyperglycaemic acetylenic glucosides from *Bidens pilosa*. *Planta Med.* 66: 82 (2000).

- 190. M. Velussi, A. M. Cernigoi, A. De Monte, F. Dapas, C. Caffau and M. Zilli. Long-term (12 months) treatment with an antioxidant drug (silymarin) is effective on hyperinsulinemia, exogenous insulin need and malondialdehyde levels in cirrhotic diabetic patients. *J Hepatol.* 26: 871 (1997).
- 191. B. Wang, H. C. Liu and C. Y. Ju. Study on the hypoglycaemic activity of different extracts of wild *Psidium guajava* leaves in Panzhihua Area. *Sichuan Da Xue Xue Bao Yi Xue Ban.* 36(6): 858 (2005).
- 192. K. M. Witherup, J. L. McLaughlin and R. L. Judd. Identification of 3-hydroxy -3-methyl glutaric acid (HMG) as hypoglycaemic principle of Spanish moss (*Tillandsia usneoides*). J Nat Prod. 58: 1285 (1995).
- 193. M. Yang, B. X. Wang and Y. L. Jin. Effects of ginseng polysaccharides on reducing blood glucose and liver glycogen. *Chung Kuo Yao Li Hsueh Pao.* 11: 520-524 (1990).
- 194. B. X. Wang, M. Yang and Y. L. Jin. Studies on the hypoglycaemic effect of ginseng polypeptide. *Yao Hsueh Pao.* 25: 401-405 (1990).
- 195. M. Yoshikawa, E. Harada and T. Murakami. Escins-Ia, Ib, IIa, IIb and IIIa bioactive triterpine oligoglycosides from the seeds of Aesculus *hippocastanum* L: their inhibitory effects on ethanol absorption, and hypoglycaemic activity on glucose tolerance test. *Chem Pharm Bull (Tokyo)*. **42**: 1357 (1994).
- 196. M. Yoshikawa, T. Murakami and H. Matsuda. Bioactive saponins and glycosides. III. Horse chestnut. (1): the structure , inhibitory effect on ethanol absorption and hypoglycaemic activity of escins- Ia, Ib, IIa, IIb and IIIa from the seeds of Aesculus *hippocastanum* L. *Chem Pharm Bull (Tokyo)*. 44: 1454 (1996).
- 197. M. Yoshikawa, H. Shimada and T. Morikawa. Medicinal foodstuffs VII. On the saponin constituents with glucose and alcohol absorption-inhibitory activity from a food garnish "Tonburi", the fruit of Japanese *Kochia scoparia* (L.) Schard: structures of scoparianosides A, B, and C. *Chem Pharm Bull* (*Tokyo*). 45: 1300 (1997).
- 198. A. Zarzuelo, S. Risco and M. J. Gamez. Hypoglycaemic action of *Salvia lavandufolia* Vahl. Spp. Oxyodon: a contribution to studies on the mechanism of action. *Life Sci.* 47: 909 (1990).
- 199. I. Jimenez, J. Jimenez and J. Gamez. Effects of Salvia lavandufolia Vahl Spp Oxyodon extract on pancreatic endocrine tissue in streptozotocin diabetic rats. *Phytother Res.* 9: 536 (1995).