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ABSTRACT
Background: Cancer remains to be a major health problem despite advances in treatment. 
Chemo- and radiotherapy resistance accounting for cancer recurrence have been recently 
attributed to a subpopulation of cells within the tumor, namely cancer stem cells (CSCs). Aim: 
Hence, it is essential to adopt new therapeutic approaches that target these cells. Methods 
and Results: The black seed extract Thymoquinone (TQ) has shown promising anti-cancer 
effects on various cancer types. Here, we provide an overview of TQ’s potential in targeting 
CSCs with emphasis on its mechanism of action and shed light on its development as a future 
drug for cancer therapy. Conclusion: TQ showed potency against CSCs either alone or in 
combination with chemotherapeutic agents.
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Thymoquinone: A Potential Therapy against Cancer Stem Cells

INTRODUCTION
Cancer is a major public health concern globally and 
the second leading cause of death after myocardial 
infarction in the United States.[1] Chemotherapy 
either alone or in combination with other treatments 
is the most common treatment option in cancer 
therapy. Unfortunately, chemotherapeutic agents 
have many adverse side effects and their effectiveness 
has been greatly limited by drug resistance. Resistance 
to therapy has been associated with a subpopulation 
of cells within the tumor, namely cancer stem cells 
(CSCs). Currently, growing interest is heading 
towards using compounds from natural sources for 
cancer treatment, as natural products are less toxic, 
widely available and cost-effective. Plant-derived 
drugs have been used traditionally for the treatment 
of various diseases and scientists are now developing 
new drugs by combining folk medicine with modern 
medicine. The plant-derived molecule thymoquinone 
(TQ) has shown promising anti-cancer activity by 
inhibiting cancer cell growth and progression in vitro 
and in vivo. In this review, we aim to shed light on 
the potential effect of TQ on CSCs either alone or in 
combination with other clinically available drugs to 
achieve enhanced efficacy and overcome resistance to 
therapy.

Thymoquinone: a naturally derived 
compound with anti-cancer properties
Thymoquinone is the main active molecule of the 
essential oil extracted from Nigella sativa black seed 
that has been commonly used as a herbal medicine for 
the treatment and prevention of a variety of diseases 
including asthma, diarrhea and dyslipidemia.[2] 
TQ has a wide range of beneficial biological and 
pharmacological properties. It possesses outstanding 
anti-oxidant,[3] hypoglycemic,[4] anti-inflammatory,[5] 

anti-cancer,[2] neuro-,[6] cardio-,[7] nephro-,[8] and 
hepato-protective[9] activities. TQ has shown 
promising effects on various cancer types both in 
vitro and in vivo[10] including breast,[11] prostate,[12] 
gastric,[13] lung,[14] colorectal,[15-18] osteosarcoma[19] 
and bladder cancer.[20] TQ’s anti-cancer mechanism 
has not been fully understood so far; however, 
several modes of action have been described. TQ 
was shown to induce apoptosis in cancer cells by 
inducing reactive oxygen species, DNA damage, 
telomere shortening, immunomodulation through 
inhibition of NF-kappa B (NF-κB) and its regulated 
gene products and by targeting carcinogenic 
signaling pathways such as JAK/STAT and PI3K/Akt 
signaling.[21] TQ was also shown to regulate epithelial 
to mesenchymal transition and to inhibit cancer 
metastasis by reducing matrix metalloproteinase 
(MMP-2 and MMP-9) secretion and the expression 
of TWIST1.[22,23] 
Naturally derived drugs are an important 
component of combination chemotherapy and are 
integrated with traditional regimens to improve 
efficacy, safety and tolerability.[24] They establish 
their effects by either acting synergistically with 
conventional drugs or by sensitizing cancer cells 
to these drugs.[25] TQ was shown to enhance  
chemotherapeutic potentiality when combined 
with clinically available drugs.[21] Combination 
of TQ with 5-Fluorouracil increased apoptotic 
activity in gastric cancer cells in vitro and  
in vivo.[26,27] Kensara et al. reported that 5-Fluorouracil 
and TQ cooperate to repress the expression of  
pro-cancerous Wnt, β-catenin, NF-κB, COX-2, 
iNOS, VEGF and TBRAS and to up-regulate the 
expression of anti-tumorigenesis markers DKK-1, 
CDNK-1A, TGF-β1, TGF-βRII, Smad4 and GPx 
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in colorectal carcinogenesis in rats.[28] Combination of cisplatin and 
TQ was shown to be highly effective in enhancing cisplatin-mediated 
cytotoxicity in lung and ovarian cancer cells and in mouse models.
[29,30] TQ and paclitaxel combination showed synergistic effects against 
triple negative breast cancer.[31] Treatment with TQ and docetaxel 
induced cytotoxicity and apoptosis by modulating PI3K-Akt pathway in 
Castrate-resistant prostate cancer cells.[32] Moreover, TQ in combination 
with zoledronic acid showed significant synergistic cytotoxic activity 
and DNA fragmentation in PC-3 and DU-145 prostate cancer cells.[32] 
In addition to its adjuvant chemotherapeutic effect, TQ also mediates 
radio-sensitization[33] whereby it was found to exert supra-additive 
cytotoxic and apoptotic effects on MCF7 and T47D breast cancer cells 
when combined with a single dose of ionizing radiation (2.5 Gy). TQ was 
also shown to have protective effects on radiation induced small intestine 
injury in mice by inhibiting p53 pathway, thus reducing intestinal cell 
apoptosis.[34] Considering TQ’s multiple targeting mechanisms, its 
potency in small concentrations, in vivo efficacy and its effectiveness 
when combined with chemo and radiotherapy, this compound merits 
further clinical investigation.

Cancer stem cells
Cancer stem cells (CSCs) are characterized by self-renewal, multipotency, 
limitless proliferation potential, angiogenic and immune evasion  
features.[35] Intriguingly, CSCs are relatively highly resistant to 
conventional therapeutic measures and are thus responsible for tumor 
relapse due to the expression of DNA repair mechanisms, detoxifying 
enzymes, anti-apoptosis proteins and multiple drug resistance 
transporters.[36,37] 
Populations of CSCs have been identified and isolated from various 
cancer types using a combination of surface markers including CD24, 
CD44, CD133, EpCAM, lgr5, among others.[38] CSCs reside in a tumor-
promoting microenvironment.[39] Genetic or epigenetic aberrations in 
the stem cells compartment may lead to alterations of the tumorigenic 
niche[40,41] that is composed of transformed myofibroblasts, recruited 
myeloid cells and extracellular components producing hepatocyte growth 
factor (HGF), tumor necrosis factor α (TNF-α) and interleukin (IL)-6, 
which promote dedifferentiation, carcinogenesis and invasiveness.[41,42]

Evidence suggests that it is the fine tuning between pathways involved in 
self-renewal that switch a normal stem cell into a malignant stem cell.[43] 
Multiple signaling pathways are involved in CSCs survival, maintenance 
and self-renewal. Key stemness-signaling pathways include Wnt/β-
catenin, JAK/STAT, Hedgehog, Notch and PI3K/Akt (Figure 1).[44] 
Wnt signaling pathway is involved in embryonic development and 
homeostasis of tissues. Mutations in the APC gene, β-catenin, or the 

regulatory proteins in the Wnt pathway result in constant activation.[45] 
This may lead to uncontrolled proliferation, a shift from asymmetrical 
to symmetrical divisions and augmented survival. Wnt signaling is also 
involved in the process of epithelial to mesenchymal transition (EMT), 
invasion and self-renewal or cancer cell dedifferentiation into CSCs.[42,46] 
Studies have shown that STAT3 signaling, which in normal cells 
is involved in physiological functions including development, 
differentiation, immunity and metabolism, is constitutively active in 
cancer stem cells. Over activation of STAT3 in CSCs may be critical for 
maintaining their stemness by increasing expression of genes such as 
c-Myc and β-catenin, the ability to self-renew and differentiate[47] and 
may promote tumorigenesis, metastasis and recurrence.[47,48] In addition, 
overactivation of STAT3 in CSCs may generate an inflammatory 
positive feedback loop[49] in which STAT3 promotes production of 
proinflammatory cytokines, notably IL-6 that in turn stimulates STAT3 
activation. This inflammatory feedback loop can promote tumor 
progression. 
Notch signaling has been reported to promote the self-renewal of CSC 
in several malignancies and to participate in tumor–stroma and tumor–
endothelium interactions in CSC niches in primary and metastatic 
tumors.[50] Notch signaling regulates both the formation of CSCs and 
the acquisition of the EMT phenotype by cross talking with several 
transcription and growth factors relevant to EMT such as Snail, Slug 
and TGF-β,[51] which are associated with drug resistance. Inappropriate 
Notch activation stimulates proliferation, restricts differentiation and/
or prevents apoptosis. Several classes of Notch inhibitors have been 
developed to reverse EMT and stemness in CSCs. The strongest evidence 
for the role of Notch in CSC is in breast cancer, embryonal brain tumors 
and gliomas.[51]

The Hedgehog (HH) pathway is involved in embryogenesis, adult tissue 
homeostasis and repair, regulation of the epithelial-to-mesenchymal 
transition and the control of cell survival and proliferation.[52] Recently, 
the HH pathway has been shown to be involved in the regulation of 
proliferation, maintenance and self-renewal capacity of CSCs.[53] 
The PI3K/Akt/mTOR signaling pathway is crucial for cell proliferation, 
angiogenesis, metabolism, differentiation and survival and is frequently 
improperly regulated in most human cancers.[54] Recent studies have 
provided evidence for the importance of this pathway in maintaining 
the CSCs population through induction of EMT, regulation of surface 
markers like CD133 and EpCAM and regulation of ATP binding cassette 
transporters (ABCG2) activity.[53] 
Another mechanism of CSCs resistance is evading apoptosis. This is 
mediated through various mechanisms including impaired apoptotic 
machinery, increased DNA damage repair, altered cell cycle checkpoint 
control and upregulation of MDR proteins.[55] Upregulation of anti-
apoptotic proteins such as cFLIPS and inhibitors of apoptosis proteins 
(IAPs) and dysregulation of Bcl-2 family members were shown to be 
associated with the survival of CSCs.[44] Furthermore, production of 
interleukin-4 (IL-4)[56] and activated NF-κB[57] could protect CSCs from 
apoptosis. 
Collectively, dysregulation of these pathways contributes to CSC 
resistance to chemotherapy and radiotherapy and to cancer recurrence 
and metastasis. 

Cancer stem cells and the promise of TQ
Direct CSC targeting can be achieved by several approaches which 
include inhibiting self-renewal pathways including Wnt, Notch and 
Hedgehog, as well as selectively targeting surface markers, inhibiting 
ABC cassette, interfering with vital anti-apoptotic or metabolic pathways, 
activating differentiation pathways and/or by acting on the protective 
microenvironment (Figure 2).[55,58] Recently, much attention has focused 

Figure 1: Signaling pathways involved in CSCs survival, maintenance and 
self-renewal.
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on several phytochemicals showing promising anti-cancer properties due 
to their safety, availability, cost effectiveness and more importantly their 
ability to improve efficacy when combined with conventional chemo- 
and radiotherapy.[24] Since CSCs are more resistant to conventional 
therapies in comparison with the differentiated cells constituting the 
tumor bulk, a combination of naturally derived drugs and conventional 
anti-cancer drug therapies may have the potential to overcome tumor 
resistance and reduce recurrence . TQ’s evident potency against various 
cancers has increased researchers’ interest in investigating its effect 
on CSCs either alone or in combination with other clinically available 
drugs. Studies are still limited; however, the findings hold great promise. 
We have recently shown that TQ targets an enriched population of 
5-flurouracil sensitive and resistant colorectal CSCs both in vitro and in 
vivo. We employed a 3D sphere formation assay to enrich for colorectal 
CSCs from HCT116 human colorectal cancer cells. TQ treatment 
inhibited sphere forming ability, reduced cellular proliferation and down 
regulated the expression of CD44 and EpCAM surface markers and 
induced apoptosis and DNA damage in colon spheres both in vitro and 
in vivo (Ballout et al. 2020 in press). Another study by Ndreshkjana et al. 
(2019)[59] has recently reported that the combination of 5-flurouracil and 
TQ and their hybridization through esterification (SARB hybrid) targets 
stem cell gene signature in colorectal cancer cells by downregulating 
two key stem cell regulatory pathways, WNT/β-catenin and PI3K/
AKT pathways.[59] In addition to colorectal cancer, TQ was shown 
to target stemness in human renal carcinoma cells by suppressing the 
cell sphere formation and the expression of aldehyde dehydrogenase, 
Nanog, Nestin, CD44 and Oct-4.[60] TQ and gemcitabine combination 
depleted breast cancer-associated stem cell (CD44(+)/CD24(−)/(low)) clone 
within MCF-7 and T47D breast cancer cells.[61] Similarly, TQ was shown 
to enhance paclitaxel anti-cancer activity and to sensitize breast cancer 
cells through the depletion of breast cancer-associated stem cell clone 
(CD44+/CD24-) in both MCF-7 and T47D cells.[62] Therefore, traditional 
chemo-radiotherapy should be combined with new practical therapeutic 
approaches that target CSCs and prevent relapse.[63,64]

A major limitation for TQ’s clinical translation lies in its hydrophobicity, 
poor bioavailability and high capacity to bind to plasma proteins.[65] TQ 
nanoparticle encapsulation could serve as a new platform for overcoming 
these limitations, thus promoting clinical testing of TQ. So far, several 

TQ nanoparticle formulations including polymeric, liposomal and solid 
lipid nanoparticles have been tested against colon, prostate, cervical and 
breast cancer, as well as leukemia and multiple myeloma.[66-69] A recent 
study by Ibiyeye and Zuki (2020)[70] showed that combined doxorubicin/
thymoquinone-loaded cockle-shell-derived aragonite calcium carbonate 
nanoparticles can efficiently target breast CSCs by enhancing apoptosis, 
reducing ALDH activity and decreasing the expression of CD44 and 
CD24 surface makers. This combination regimen also reduced cellular 
migration and invasion and inhibited 3D sphere formation by distorting 
sphere architecture when compared to the free drugs and the single 
drug-loaded nanoparticle.[70]

Proposed mechanism of action of TQ for targeting CSCs
Few studies have reported the effect of TQ on CSCs and little is known 
about its mechanism of action against these cells. The mechanism of TQ 
action on several types of cancer is not yet fully understood; however, 
several modes of action have been described that could also explain its 
promising potential against CSCs population. 
As previously discussed, TQ possess an ability of multilateral targeting 
of various cellular and molecular signaling pathways dysregulated in 
cancer. TQ was shown to regulate self-renewal associated signaling 
pathways, which are crucial for CSCs survival and for evading apoptosis. 
TQ was shown to inactivate the JAK/STAT signaling pathway by 
inhibiting STAT3 phosphorylation, reducing c-Src and JAK2 activity and 
by attenuating the expression of STAT3 target gene products.[71] TQ is 
known to modulate Wnt signaling through GSK-3β activation, β-catenin 
translocation and reduction of nuclear c-myc.[72] TQ was demonstrated 
to down regulate NF-κB and inhibit signaling through PI3/AKT 
pathway.[73,74] Furthermore, TQ induced apoptosis through activation of 
p53, induction of Bax, PARP and caspase 3 cleavage, downregulation of 
Bcl-2 and XIAP and induction of reactive oxygen species (reviewed in.[75] 
TQ also inhibits epithelial to mesenchymal transition by reducing matrix 
metalloproteinase (MMP-2 and MMP-9) secretion and the expression of 
VEGF and TWIST1.[22-23]

Most pathways targeted by TQ are involved in CSCs maintenance and 
death resistance; thus, TQ is a compound that could possibly inhibit 
CSCs populations in tumors (Figure 3) which emphasizes the need for 
its in-depth clinical investigation.

CONCLUSION
Ample evidence has associated cancer recurrence and resistance to 
therapy to a population of CSCs. In recent years, many studies have 
revealed the anti-cancer potential of TQ and its ability to modulate 
various signaling pathways that are aberrantly regulated in cancer. 
Here, we summarized the current state of TQ’s potential in targeting 
CSCs in various cancer types and focused on its mechanism of action. 
TQ’s potency against CSCs either alone or in combination with 

Figure 2: Drug-induced mechanisms for targeting cancer stem cells (CSCs).

Figure 3: An overview of TQ’s mechanism of action against CSCs.
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chemotherapeutic drugs may provide a potential curative strategy for 
the management of cancer recurrence and overcoming aggravating 
therapy resistance. TQ nanoparticle encapsulations are becoming more 
clinically attractive because of their improved bioavailability, delivery 
and targeting capacity. Assessing the efficacy of such nanoparticles 
in combination with conventional chemotherapy holds promise for 
achieving effective treatment strategies that specifically target the CSC 
population and sensitize tumor tissues to treatment. 
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ABBREVIATIONS
CSCs: Cancer Stem Cells; EMT: Epithelial-Mesenchymal Transition; 
EpCAM: Epithelial cell adhesion molecule; TQ: Thymoquinone; 
NF-κB: Nuclear factor kappa; MMP: Matrix metalloproteinase; VEGF: 
Vascular Endothelial Cell Growth Factor; COX-2: Cyclo-oxygenase 2; 
TGF-β: Transforming Growth Factor-Beta; Lgr5: Leucine-Rich Repeat-
Containing G-Protein-Coupled Receptor; IL-4: Interleukin 4; IL-6: 
Interleukin 6; APC: Adenomatous polyposis coli; ABCG2: ATP binding 
cassette transporters; HH: Hedgehog; MDR: Multi-drug resistance; 
ALDH: Aldehyde dehydrogenase; 3D: Three-dimension; Bcl-2: B-cell 
lymphoma 2; GSK-3β: Glycogen synthase kinase 3β; PPAR: Peroxisome 
proliferator-activated receptor; XIAP: X-Linked Inhibitor of Apoptosis 
Protein.

SUMMARY
This paper reviews the most recent findings on Thymoquinone’s potential 
in targeting Cancer Stem Cells with a focus on its mechanism of action. 
Cancer Stem Cells are resistant to therapy and associated with tumor 
relapse. Thymoquinone targets chemo-resistant Cancer Stem Cells and 
combining Thymoquinone with conventional therapy holds promise in 
preventing tumor relapse.
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